9129767 3BVIFSK4 1 apa 50 date desc year Ralph 18 https://mralph.scrippsprofiles.ucsd.edu/wp-content/plugins/zotpress/
%7B%22status%22%3A%22success%22%2C%22updateneeded%22%3Afalse%2C%22instance%22%3Afalse%2C%22meta%22%3A%7B%22request_last%22%3A200%2C%22request_next%22%3A50%2C%22used_cache%22%3Atrue%7D%2C%22data%22%3A%5B%7B%22key%22%3A%22NUA6LKVT%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Zou%20et%20al.%22%2C%22parsedDate%22%3A%222025-01-16%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EZou%2C%20X.%2C%20Cordeira%2C%20J.%20M.%2C%20Bartlett%2C%20S.%20M.%2C%20%26amp%3B%20%3Cstrong%3ERalph%3C%5C%2Fstrong%3E%2C%20F.%20M.%20%282025%29.%20A%20Case%20Study%20of%20an%20Exceptional%20Atmospheric%20River%20and%20Explosively%20Deepening%20Cyclone%20Over%20the%20US%20Central%20Plains%20in%20March%202019.%20%3Ci%3EJournal%20of%20Geophysical%20Research%3A%20Atmospheres%3C%5C%2Fi%3E%2C%20%3Ci%3E130%3C%5C%2Fi%3E%281%29%2C%20e2024JD042309.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2024JD042309%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2024JD042309%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22A%20Case%20Study%20of%20an%20Exceptional%20Atmospheric%20River%20and%20Explosively%20Deepening%20Cyclone%20Over%20the%20US%20Central%20Plains%20in%20March%202019%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xun%22%2C%22lastName%22%3A%22Zou%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jason%20M.%22%2C%22lastName%22%3A%22Cordeira%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Samuel%20M.%22%2C%22lastName%22%3A%22Bartlett%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%20Martin%22%2C%22lastName%22%3A%22Ralph%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20In%20March%202019%2C%20a%20strong%20atmospheric%20river%20%28AR%29%20originating%20from%20the%20Gulf%20of%20Mexico%20transported%20abundant%20moisture%20inland%20and%20fueled%20a%20record%5Cu2010breaking%20bomb%20cyclone%20in%20Colorado%2C%20resulting%20in%20widespread%20winter%20weather%20hazards%20across%20several%20states.%20Experimental%20model%20simulations%20and%20trajectory%20analysis%20indicate%20that%20mid%5Cu2010tropospheric%20latent%20heat%20release%20%28LHR%29%20coincided%20with%20the%20strength%20of%20the%20warm%20conveyor%20belt%20and%20played%20a%20key%20role%20in%20the%20deepening%20of%20the%20cyclone.%20The%20LHR%20promoted%20the%20generation%20of%20a%20lower%20tropospheric%20positive%20potential%20vorticity%20%28PV%29%20anomaly%20and%20a%20stronger%20low%5Cu2010level%20cyclonic%20circulation%2C%20enhancing%20the%20cyclone%2C%20low%5Cu2010level%20jet%20stream%2C%20and%20associated%20water%20vapor%20transport.%20Additionally%2C%20it%20generated%20an%20upper%20tropospheric%20negative%20PV%20anomaly%20and%20strong%20upper%5Cu2010level%20anticyclonic%20circulation%2C%20influencing%20the%20structure%20of%20the%20trough%5Cu2010ridge%20couplet%20and%20the%20associated%20Rossby%20wave.%20Reductions%20in%20the%20initial%20intensity%20of%20the%20AR%20and%20disallowing%20LHR%20both%20weakened%20the%20cyclone.%20However%2C%20disallowing%20LHR%20significantly%20disturbed%20the%20synoptic%5Cu2010scale%20structure%20of%20the%20storm%20and%20embedded%20Rossby%20wave%2C%20resulting%20in%20a%20stronger%20impact.%20Thus%2C%20the%20reduction%20of%20diabatic%20PV%20generation%2C%20under%20the%20influence%20of%20AR%20activities%2C%20was%20crucial%20in%20the%20explosive%20intensification%20of%20the%20cyclone.%20Additionally%2C%20the%20reductions%20in%20AR%20intensity%20and%20the%20magnitude%20of%20cyclone%20weakening%20did%20not%20show%20a%20linear%20relationship.%20Few%20studies%20have%20explored%20interactions%20between%20ARs%20and%20continental%20cyclones%2C%20and%20this%20paper%20highlights%20the%20need%20for%20further%20research%20on%20AR%5Cu2010associated%20extreme%20weather%20events%20inland.%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Plain%20Language%20Summary%5Cn%20%20%20%20%20%20%20%20%20%20%20%20This%20study%20utilized%20model%20simulations%20to%20explore%20the%20March%202019%20severe%20weather%20event%20in%20Colorado%2C%20focusing%20on%20the%20correlation%20between%20an%20atmospheric%20river%20%28AR%29%20and%20a%20bomb%20cyclone.%20The%20moisture%20from%20the%20Gulf%20of%20Mexico%20promotes%20AR%20development%2C%20subsequently%20strengthening%20a%20preexisting%20cyclone%20through%20moisture%20transportation%20and%20energy%20release%20during%20precipitation.%20AR%20contributed%20to%20local%20precipitation%20and%20wind%20fields%20not%20only%20by%20supplying%20moisture%20but%20also%20by%20modifying%20regional%20circulation%20at%20both%20upper%20and%20lower%20levels%2C%20influencing%20extreme%20weather%20events%20directly%20and%20indirectly.%20The%20energy%20transfer%20during%20precipitation%20exhibited%20a%20more%20significant%20influence%20on%20the%20circulation%20compared%20to%20a%20simple%20alternation%20in%20the%20background%20moisture.%20Consequently%2C%20a%20more%20resilient%20AR%20resulted%20in%20extreme%20weather%20exerting%20a%20stronger%20impact%20further%20inland%2C%20away%20from%20the%20moisture%20source.%20Further%20investigation%20of%20similar%20cases%20in%20the%20Colorado%20region%20is%20needed%20to%20enhance%20our%20understanding%20of%20the%20relationship%20between%20AR%20and%20other%20weather%20systems%2C%20as%20well%20as%20their%20compounded%20impacts%20on%20natural%20hazards.%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Key%20Points%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20A%20robust%20atmospheric%20river%20originating%20from%20the%20Gulf%20of%20Mexico%20bolstered%20a%20preexisting%20cyclone%20in%20Colorado%2C%20resulting%20in%20extreme%20weather%20in%20March%202019%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Latent%20heat%20release%20is%20the%20key%20component%20for%20the%20cyclogenesis%20and%20the%20development%20of%20downstream%20upper%5Cu2010level%20ridge%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20ARs%20can%20interact%20with%20weather%20systems%20across%20various%20scales%2C%20contributing%20to%20extreme%20weather%20both%20directly%20and%20indirectly%22%2C%22date%22%3A%222025-01-16%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1029%5C%2F2024JD042309%22%2C%22ISSN%22%3A%222169-897X%2C%202169-8996%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fagupubs.onlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1029%5C%2F2024JD042309%22%2C%22collections%22%3A%5B%2244X4EX84%22%2C%223BVIFSK4%22%5D%2C%22dateModified%22%3A%222025-01-23T21%3A18%3A52Z%22%7D%7D%2C%7B%22key%22%3A%22B73UHS59%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Rush%20et%20al.%22%2C%22parsedDate%22%3A%222025-01-16%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ERush%2C%20W.%20D.%2C%20Lora%2C%20J.%20M.%2C%20Skinner%2C%20C.%20B.%2C%20Menemenlis%2C%20S.%20A.%2C%20Shields%2C%20C.%20A.%2C%20Ullrich%2C%20P.%2C%20O%26%23x2019%3BBrien%2C%20T.%20A.%2C%20Brands%2C%20S.%2C%20Guan%2C%20B.%2C%20Mattingly%2C%20K.%20S.%2C%20McClenny%2C%20E.%2C%20Nardi%2C%20K.%2C%20Nellikkattil%2C%20A.%2C%20Ramos%2C%20A.%20M.%2C%20Reid%2C%20K.%20J.%2C%20Shearer%2C%20E.%2C%20Tom%26%23xE9%3B%2C%20R.%2C%20Wille%2C%20J.%20D.%2C%20Leung%2C%20L.%20R.%2C%20%26%23x2026%3B%20Quagraine%2C%20K.%20T.%20%282025%29.%20Atmospheric%20River%20Detection%20Under%20Changing%20Seasonality%20and%20Mean%26%23x2010%3BState%20Climate%3A%20ARTMIP%20Tier%202%20Paleoclimate%20Experiments.%20%3Ci%3EJournal%20of%20Geophysical%20Research%3A%20Atmospheres%3C%5C%2Fi%3E%2C%20%3Ci%3E130%3C%5C%2Fi%3E%281%29%2C%20e2024JD042222.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2024JD042222%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2024JD042222%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Atmospheric%20River%20Detection%20Under%20Changing%20Seasonality%20and%20Mean%5Cu2010State%20Climate%3A%20ARTMIP%20Tier%202%20Paleoclimate%20Experiments%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22W.%20D.%22%2C%22lastName%22%3A%22Rush%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%20M.%22%2C%22lastName%22%3A%22Lora%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C.%20B.%22%2C%22lastName%22%3A%22Skinner%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%20A.%22%2C%22lastName%22%3A%22Menemenlis%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C.%20A.%22%2C%22lastName%22%3A%22Shields%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%22%2C%22lastName%22%3A%22Ullrich%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22T.%20A.%22%2C%22lastName%22%3A%22O%5Cu2019Brien%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Brands%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%22%2C%22lastName%22%3A%22Guan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22K.%20S.%22%2C%22lastName%22%3A%22Mattingly%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22E.%22%2C%22lastName%22%3A%22McClenny%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22K.%22%2C%22lastName%22%3A%22Nardi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Nellikkattil%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%20M.%22%2C%22lastName%22%3A%22Ramos%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22K.%20J.%22%2C%22lastName%22%3A%22Reid%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22E.%22%2C%22lastName%22%3A%22Shearer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R.%22%2C%22lastName%22%3A%22Tom%5Cu00e9%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%20D.%22%2C%22lastName%22%3A%22Wille%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%20R.%22%2C%22lastName%22%3A%22Leung%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%20M.%22%2C%22lastName%22%3A%22Ralph%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%20J.%22%2C%22lastName%22%3A%22Rutz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Wehner%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Z.%22%2C%22lastName%22%3A%22Zhang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Lu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22K.%20T.%22%2C%22lastName%22%3A%22Quagraine%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Atmospheric%20rivers%20%28ARs%29%20are%20filamentary%20structures%20within%20the%20atmosphere%20that%20account%20for%20a%20substantial%20portion%20of%20poleward%20moisture%20transport%20and%20play%20an%20important%20role%20in%20Earth%27s%20hydroclimate.%20However%2C%20there%20is%20no%20one%20quantitative%20definition%20for%20what%20constitutes%20an%20atmospheric%20river%2C%20leading%20to%20uncertainty%20in%20quantifying%20how%20these%20systems%20respond%20to%20global%20change.%20This%20study%20seeks%20to%20better%20understand%20how%20different%20AR%20detection%20tools%20%28ARDTs%29%20respond%20to%20changes%20in%20climate%20states%20utilizing%20single%5Cu2010forcing%20climate%20model%20experiments%20under%20the%20aegis%20of%20the%20Atmospheric%20River%20Tracking%20Method%20Intercomparison%20Project%20%28ARTMIP%29.%20We%20compare%20a%20simulation%20with%20an%20early%20Holocene%20orbital%20configuration%20and%20another%20with%20CO%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20levels%20of%20the%20Last%20Glacial%20Maximum%20to%20a%20preindustrial%20control%20simulation%20to%20test%20how%20the%20ARDTs%20respond%20to%20changes%20in%20seasonality%20and%20mean%20climate%20state%2C%20respectively.%20We%20find%20good%20agreement%20among%20the%20algorithms%20in%20the%20AR%20response%20to%20the%20changing%20orbital%20configuration%2C%20with%20a%20poleward%20shift%20in%20AR%20frequency%20that%20tracks%20seasonal%20poleward%20shifts%20in%20atmospheric%20water%20vapor%20and%20zonal%20winds.%20In%20the%20low%20CO%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20simulation%2C%20the%20algorithms%20generally%20agree%20on%20the%20sign%20of%20AR%20changes%2C%20but%20there%20is%20substantial%20spread%20in%20their%20magnitude%2C%20indicating%20that%20mean%5Cu2010state%20changes%20lead%20to%20larger%20uncertainty.%20This%20disagreement%20likely%20arises%20primarily%20from%20differences%20between%20algorithms%20in%20their%20thresholds%20for%20water%20vapor%20and%20its%20transport%20used%20for%20identifying%20ARs.%20These%20findings%20warrant%20caution%20in%20ARDT%20selection%20for%20paleoclimate%20and%20climate%20change%20studies%20in%20which%20there%20is%20a%20change%20to%20the%20mean%20climate%20state%2C%20as%20ARDT%20selection%20contributes%20substantial%20uncertainty%20in%20such%20cases.%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Plain%20Language%20Summary%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Atmospheric%20rivers%20are%20filaments%20of%20moisture%20in%20the%20atmosphere%20that%20play%20an%20important%20role%20in%20precipitation%2C%20but%20there%20is%20no%20one%20agreed%5Cu2010upon%20method%20to%20define%20them.%20This%20study%20compares%20multiple%20definitions%20of%20atmospheric%20rivers%20in%20climate%20models%20that%20either%20change%20the%20timing%20and%20intensity%20of%20seasons%20by%20altering%20the%20orbit%20or%20make%20the%20planet%20colder%20by%20lowering%20CO%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20levels.%20We%20found%20that%20the%20various%20definitions%20of%20atmospheric%20rivers%20tended%20to%20agree%20in%20the%20model%20in%20which%20the%20seasons%20changed%2C%20but%20there%20was%20substantial%20disagreement%20in%20the%20model%20of%20the%20colder%20planet.%20The%20most%20likely%20reason%20for%20this%20is%20the%20definitions%20are%20based%20on%20modern%5Cu2010day%20observations.%20While%20the%20climate%20for%20the%20model%20with%20the%20altered%20seasons%20was%20on%20average%20similar%20to%20the%20modern%2C%20the%20colder%20model%20was%20substantially%20different%2C%20particularly%20as%20it%20relates%20to%20the%20amount%20of%20water%20in%20the%20atmosphere.%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Key%20Points%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Atmospheric%20river%20detection%20tools%20are%20applied%20to%20climate%20model%20simulations%20incorporating%20insolation%20and%20greenhouse%20gas%20changes%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20AR%20frequency%20changes%20due%20to%20orbital%20forcing%20and%20associated%20changing%20seasonality%20generally%20agree%20across%20algorithms%20in%20most%20regions%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20AR%20frequency%20changes%20due%20to%20lower%20greenhouse%20gas%20concentrations%20agree%20in%20sign%2C%20but%20there%20is%20substantial%20disagreement%20in%20magnitude%22%2C%22date%22%3A%222025-01-16%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1029%5C%2F2024JD042222%22%2C%22ISSN%22%3A%222169-897X%2C%202169-8996%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fagupubs.onlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1029%5C%2F2024JD042222%22%2C%22collections%22%3A%5B%223BVIFSK4%22%5D%2C%22dateModified%22%3A%222025-01-23T21%3A22%3A40Z%22%7D%7D%2C%7B%22key%22%3A%22AXK8WGJ3%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Luna-Ni%5Cu00f1o%20et%20al.%22%2C%22parsedDate%22%3A%222025%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ELuna-Ni%26%23xF1%3Bo%2C%20R.%2C%20Gershunov%2C%20A.%2C%20%3Cstrong%3ERalph%3C%5C%2Fstrong%3E%2C%20F.%20M.%2C%20Weyant%2C%20A.%2C%20Guirguis%2C%20K.%2C%20DeFlorio%2C%20M.%20J.%2C%20Cayan%2C%20D.%20R.%2C%20%26amp%3B%20Williams%2C%20A.%20P.%20%282025%29.%20Heresy%20in%20ENSO%20teleconnections%3A%20atmospheric%20rivers%20as%20disruptors%20of%20canonical%20seasonal%20precipitation%20anomalies%20in%20the%20Southwestern%20US.%20%3Ci%3EClimate%20Dynamics%3C%5C%2Fi%3E%2C%20%3Ci%3E63%3C%5C%2Fi%3E%282%29%2C%20115.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1007%5C%2Fs00382-025-07583-1%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1007%5C%2Fs00382-025-07583-1%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Heresy%20in%20ENSO%20teleconnections%3A%20atmospheric%20rivers%20as%20disruptors%20of%20canonical%20seasonal%20precipitation%20anomalies%20in%20the%20Southwestern%20US%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Rosa%22%2C%22lastName%22%3A%22Luna-Ni%5Cu00f1o%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alexander%22%2C%22lastName%22%3A%22Gershunov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%20Martin%22%2C%22lastName%22%3A%22Ralph%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alexander%22%2C%22lastName%22%3A%22Weyant%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Kristen%22%2C%22lastName%22%3A%22Guirguis%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Michael%20J.%22%2C%22lastName%22%3A%22DeFlorio%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Daniel%20R.%22%2C%22lastName%22%3A%22Cayan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%20Park%22%2C%22lastName%22%3A%22Williams%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20In%20spite%20of%20forecasts%20for%20anomalous%20dryness%20based%20on%20the%20canonical%20La%20Ni%5Cu00f1a%20signal%2C%20Water%20Years%202011%2C%202017%2C%20and%202023%20brought%20copious%20precipitation%20to%20California%20and%20the%20Southwestern%20United%20States%20%28SWUS%29.%20Although%20El%20Ni%5Cu00f1o%5Cu2013Southern%20Oscillation%20%28ENSO%29%20is%20the%20main%20source%20of%20seasonal%20precipitation%20predictability%20for%20the%20region%2C%20outstanding%20Atmospheric%20River%20%28AR%29%20activity%20produced%20the%20unexpected%20regional%20wetness%20in%20each%20of%20these%20heretical%20water%20years%20%28WYs%29.%20We%20define%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20heretical%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20WYs%20as%20those%20that%20result%20in%20precipitation%20anomalies%20that%20oppose%20those%20expected%20based%20on%20ENSO%20canon.%20We%20assess%20the%20contribution%20of%20ARs%20and%20other%20storms%20to%20these%20WYs%2C%20finding%20that%20heretical%20La%20Ni%5Cu00f1a%5C%2FEl%20Ni%5Cu00f1o%20WYs%20were%20characterized%20by%20anomalously%20robust%5C%2Fdeficient%20AR%20activity.%20In%20California%2C%20precipitation%20accumulation%20during%20the%20heretical%20La%20Ni%5Cu00f1a%20WYs%20was%20comparable%20to%20or%20even%20exceeded%20that%20observed%20during%20the%20exceedingly%20wet%20WY1998%5Cu2014the%20textbook%20canonical%20El%20Ni%5Cu00f1o%20year.%20Our%20findings%20indicate%20a%20weaker%5C%2Fstronger%20relationship%20between%20ENSO%20and%20AR%5C%2Fnon-AR%20precipitation%2C%20primarily%20driven%20by%20storm%20frequency.%20Although%20ARs%20can%20disrupt%20the%20ENSO-precipitation%20signal%2C%20ENSO%20still%20influences%20the%20frequency%20of%20AR%20precipitation%20in%20the%20southwestern%20U.S.%20desert%2C%20the%20region%20influenced%20by%20ARs%20that%20make%20landfall%20in%20Baja%20California%2C%20Mexico.%20These%20results%20highlight%20the%20complexity%20of%20ENSO%27s%20impact%20on%20precipitation%20in%20the%20Western%20US%20and%20underscore%20the%20need%20for%20a%20nuanced%20understanding%20of%20ENSO%5Cu2019s%20influence%20on%20ARs%20to%20improve%20seasonal%20precipitation%20prediction.%22%2C%22date%22%3A%2202%5C%2F2025%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1007%5C%2Fs00382-025-07583-1%22%2C%22ISSN%22%3A%220930-7575%2C%201432-0894%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flink.springer.com%5C%2F10.1007%5C%2Fs00382-025-07583-1%22%2C%22collections%22%3A%5B%222CJDBIH8%22%2C%223BVIFSK4%22%2C%227J6PFJNF%22%2C%228U6EVDVF%22%2C%22FCUZWX58%22%5D%2C%22dateModified%22%3A%222025-02-22T00%3A08%3A52Z%22%7D%7D%2C%7B%22key%22%3A%229BK87ERF%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Yang%20et%20al.%22%2C%22parsedDate%22%3A%222024-11-23%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EYang%2C%20Z.%2C%20DeFlorio%2C%20M.%20J.%2C%20Sengupta%2C%20A.%2C%20Wang%2C%20J.%2C%20Castellano%2C%20C.%20M.%2C%20Gershunov%2C%20A.%2C%20Guirguis%2C%20K.%2C%20Slinskey%2C%20E.%2C%20Guan%2C%20B.%2C%20Delle%20Monache%2C%20L.%2C%20%26amp%3B%20%3Cstrong%3ERalph%3C%5C%2Fstrong%3E%2C%20F.%20M.%20%282024%29.%20Seasonality%20and%20climate%20modes%20influence%20the%20temporal%20clustering%20of%20unique%20atmospheric%20rivers%20in%20the%20Western%20U.S.%20%3Ci%3ECommunications%20Earth%20%26amp%3B%20Environment%3C%5C%2Fi%3E%2C%20%3Ci%3E5%3C%5C%2Fi%3E%281%29%2C%20734.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs43247-024-01890-x%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs43247-024-01890-x%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Seasonality%20and%20climate%20modes%20influence%20the%20temporal%20clustering%20of%20unique%20atmospheric%20rivers%20in%20the%20Western%20U.S%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Zhiqi%22%2C%22lastName%22%3A%22Yang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Michael%20J.%22%2C%22lastName%22%3A%22DeFlorio%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Agniv%22%2C%22lastName%22%3A%22Sengupta%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jiabao%22%2C%22lastName%22%3A%22Wang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christopher%20M.%22%2C%22lastName%22%3A%22Castellano%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alexander%22%2C%22lastName%22%3A%22Gershunov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Kristen%22%2C%22lastName%22%3A%22Guirguis%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Emily%22%2C%22lastName%22%3A%22Slinskey%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bin%22%2C%22lastName%22%3A%22Guan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Luca%22%2C%22lastName%22%3A%22Delle%20Monache%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%20Martin%22%2C%22lastName%22%3A%22Ralph%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Atmospheric%20rivers%20%28ARs%29%20are%20narrow%20corridors%20of%20intense%20water%20vapor%20transport%2C%20shaping%20precipitation%2C%20floods%2C%20and%20economies.%20Temporal%20clustering%20of%20ARs%20tripled%20losses%20compared%20to%20isolated%20events%2C%20yet%20the%20reasons%20behind%20this%20clustering%20remain%20unclear.%20AR%20orientation%20further%20modulates%20hydrological%20impacts%20through%20terrain%20interaction.%20Here%20we%20identify%20unique%20ARs%20over%20the%20North%20Pacific%20and%20Western%20U.S.%20and%5Cu00a0utilize%20Cox%20regression%20and%20composite%20analysis%20to%5Cu00a0examine%20how%20six%20major%20climate%20modes%20influence%20temporal%20clustering%20of%20unique%20ARs%20and%20orientation%20during%20extended%20boreal%20winter%20%28November%20to%20March%29.%20Results%20show%20that%20climate%20modes%20condition%20temporal%20clustering%20of%20unique%20ARs.%20The%20Pacific-North%20American%20weather%20pattern%20strongly%20modulates%20the%20clustering%20over%20the%20Western%20U.S.%20from%20early%20to%20late%20winter.%20The%20quasi-biennial%20oscillation%20and%20Pacific%20decadal%20oscillation%20affect%20late%20winter%20clustering%2C%20while%20the%20Arctic%20oscillation%20dominates%20early%20winter.%20Climate%20modes%20also%20strongly%20influence%20AR%20orientation%2C%20with%20ENSO%20particularly%20affecting%20the%20orientation%20of%20temporally%20clustered%20ARs.%22%2C%22date%22%3A%222024-11-23%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1038%5C%2Fs43247-024-01890-x%22%2C%22ISSN%22%3A%222662-4435%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.nature.com%5C%2Farticles%5C%2Fs43247-024-01890-x%22%2C%22collections%22%3A%5B%223BVIFSK4%22%2C%227J6PFJNF%22%2C%22GS9TJSRH%22%2C%225VS4ETHR%22%2C%228U6EVDVF%22%2C%22FCUZWX58%22%5D%2C%22dateModified%22%3A%222024-12-23T17%3A57%3A23Z%22%7D%7D%2C%7B%22key%22%3A%22RURLAJHC%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Zhang%20et%20al.%22%2C%22parsedDate%22%3A%222024-11-19%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EZhang%2C%20Z.%2C%20%3Cstrong%3ERalph%3C%5C%2Fstrong%3E%2C%20F.%20M.%2C%20Zou%2C%20X.%2C%20Kawzenuk%2C%20B.%2C%20Zheng%2C%20M.%2C%20Gorodetskaya%2C%20I.%20V.%2C%20Rowe%2C%20P.%20M.%2C%20%26amp%3B%20Bromwich%2C%20D.%20H.%20%282024%29.%20Extending%20the%20Center%20for%20Western%20Weather%20and%20Water%20Extremes%20%28CW3E%29%20atmospheric%20river%20scale%20to%20the%20polar%20regions.%20%3Ci%3EThe%20Cryosphere%3C%5C%2Fi%3E%2C%20%3Ci%3E18%3C%5C%2Fi%3E%2811%29%2C%205239%26%23x2013%3B5258.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.5194%5C%2Ftc-18-5239-2024%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.5194%5C%2Ftc-18-5239-2024%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Extending%20the%20Center%20for%20Western%20Weather%20and%20Water%20Extremes%20%28CW3E%29%20atmospheric%20river%20scale%20to%20the%20polar%20regions%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Zhenhai%22%2C%22lastName%22%3A%22Zhang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%20Martin%22%2C%22lastName%22%3A%22Ralph%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xun%22%2C%22lastName%22%3A%22Zou%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Brian%22%2C%22lastName%22%3A%22Kawzenuk%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Minghua%22%2C%22lastName%22%3A%22Zheng%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Irina%20V.%22%2C%22lastName%22%3A%22Gorodetskaya%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Penny%20M.%22%2C%22lastName%22%3A%22Rowe%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22David%20H.%22%2C%22lastName%22%3A%22Bromwich%22%7D%5D%2C%22abstractNote%22%3A%22Abstract.%20Atmospheric%20rivers%20%28ARs%29%20are%20the%20primary%20mechanism%20for%20transporting%20water%20vapor%20from%20low%20latitudes%20to%20polar%20regions%2C%20playing%20a%20significant%20role%20in%20extreme%20weather%20in%20both%20the%20Arctic%20and%20Antarctica.%20With%20the%20rapidly%20growing%20interest%20in%20polar%20ARs%20during%20the%20past%20decade%2C%20it%20is%20imperative%20to%20establish%20an%20objective%20framework%20quantifying%20the%20strength%20and%20impact%20of%20these%20ARs%20for%20both%20scientific%20research%20and%20practical%20applications.%20The%20AR%20scale%20introduced%20by%20Ralph%20et%20al.%5Cu00a0%282019%29%20ranks%20ARs%20based%20on%20the%20duration%20of%20AR%20conditions%20and%20the%20intensity%20of%20integrated%20water%20vapor%20transport%20%28IVT%29.%20However%2C%20the%20thresholds%20of%20IVT%20used%20to%20rank%20ARs%20are%20selected%20based%20on%20the%20IVT%20climatology%20at%20middle%20latitudes.%20These%20thresholds%20are%20insufficient%20for%20polar%20regions%20due%20to%20the%20substantially%20lower%20temperature%20and%20moisture%20content.%20In%20this%20study%2C%20we%20analyze%20the%20IVT%20climatology%20in%20polar%20regions%2C%20focusing%20on%20the%20coasts%20of%20Antarctica%20and%20Greenland.%20Then%20we%20introduce%20an%20extended%20version%20of%20the%20AR%20scale%20tuned%20to%20polar%20regions%20by%20adding%20lower%20IVT%20thresholds%20of%20100%2C%20150%2C%20and%20200%5Cu2009kg%5Cu2009m%5Cu22121%5Cu2009s%5Cu22121%20to%20the%20standard%20AR%20scale%2C%20which%20starts%20at%20250%5Cu2009kg%5Cu2009m%5Cu22121%5Cu2009s%5Cu22121.%20The%20polar%20AR%20scale%20is%20utilized%20to%20examine%20AR%20frequency%2C%20seasonality%2C%20trends%2C%20and%20associated%20precipitation%20and%20surface%20melt%20over%20Antarctica%20and%20Greenland.%20Our%20results%20show%20that%20the%20polar%20AR%20scale%20better%20characterizes%20the%20strength%20and%20impacts%20of%20ARs%20in%20the%20Antarctic%20and%20Arctic%20regions%20than%20the%20original%20AR%20scale%20and%20has%20the%20potential%20to%20enhance%20communication%20across%20observational%2C%20research%2C%20and%20forecasting%20communities%20in%20polar%20regions.%22%2C%22date%22%3A%222024-11-19%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.5194%5C%2Ftc-18-5239-2024%22%2C%22ISSN%22%3A%221994-0424%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Ftc.copernicus.org%5C%2Farticles%5C%2F18%5C%2F5239%5C%2F2024%5C%2F%22%2C%22collections%22%3A%5B%223BVIFSK4%22%5D%2C%22dateModified%22%3A%222024-12-13T18%3A11%3A55Z%22%7D%7D%2C%7B%22key%22%3A%22RJI5HM4H%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Guirguis%20et%20al.%22%2C%22parsedDate%22%3A%222024-07-28%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EGuirguis%2C%20K.%2C%20Hatchett%2C%20B.%2C%20Gershunov%2C%20A.%2C%20DeFlorio%2C%20M.%2C%20Clemesha%2C%20R.%2C%20Brandt%2C%20W.%20T.%2C%20Haleakala%2C%20K.%2C%20Castellano%2C%20C.%2C%20Luna%20Ni%26%23xF1%3Bo%2C%20R.%2C%20Tardy%2C%20A.%2C%20Anderson%2C%20M.%2C%20%26amp%3B%20%3Cstrong%3ERalph%3C%5C%2Fstrong%3E%2C%20F.%20M.%20%282024%29.%20Reinterpreting%20ENSO%26%23x2019%3Bs%20Role%20in%20Modulating%20Impactful%20Precipitation%20Events%20in%20California.%20%3Ci%3EGeophysical%20Research%20Letters%3C%5C%2Fi%3E%2C%20%3Ci%3E51%3C%5C%2Fi%3E%2814%29%2C%20e2024GL110326.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2024GL110326%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2024GL110326%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Reinterpreting%20ENSO%27s%20Role%20in%20Modulating%20Impactful%20Precipitation%20Events%20in%20California%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Kristen%22%2C%22lastName%22%3A%22Guirguis%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Benjamin%22%2C%22lastName%22%3A%22Hatchett%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alexander%22%2C%22lastName%22%3A%22Gershunov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Michael%22%2C%22lastName%22%3A%22DeFlorio%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Rachel%22%2C%22lastName%22%3A%22Clemesha%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22W.%20Tyler%22%2C%22lastName%22%3A%22Brandt%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Kayden%22%2C%22lastName%22%3A%22Haleakala%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christopher%22%2C%22lastName%22%3A%22Castellano%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Rosa%22%2C%22lastName%22%3A%22Luna%20Ni%5Cu00f1o%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alexander%22%2C%22lastName%22%3A%22Tardy%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Michael%22%2C%22lastName%22%3A%22Anderson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%20Martin%22%2C%22lastName%22%3A%22Ralph%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Water%20years%20%28WY%29%202017%20and%202023%20were%20anomalously%20wet%20for%20California%2C%20each%20alleviating%20multiyear%20drought.%20In%20both%20cases%2C%20this%20was%20unexpected%20given%20La%20Ni%5Cu00f1a%20conditions%2C%20with%20most%20seasonal%20forecasts%20favoring%20drier%5Cu2010than%5Cu2010normal%20winters.%20We%20analyze%20over%20seven%20decades%20of%20precipitation%20and%20snow%20records%20along%20with%20mid%5Cu2010tropospheric%20circulation%20to%20identify%20recurring%20weather%20patterns%20driving%20California%20precipitation%20and%20Sierra%20Nevada%20snowpack.%20Tropical%20forcing%20by%20ENSO%20causes%20subtle%20but%20important%20differences%20in%20these%20wet%20weather%20patterns%2C%20which%20largely%20drives%20the%20canonical%20seasonal%20ENSO%5Cu2010precipitation%20relationship.%20However%2C%20the%20seasonal%20frequency%20of%20these%20weather%20patterns%20is%20not%20strongly%20modulated%20by%20ENSO%20and%20remains%20a%20primary%20source%20of%20uncertainty%20for%20seasonal%20forecasting.%20Seasonal%20frequency%20of%20ENSO%5Cu2010independent%20weather%20patterns%20was%20a%20major%20cause%20of%20anomalous%20precipitation%20in%20WY2017%2C%20record%5Cu2010setting%20snow%20in%20WY2023%2C%20and%20differences%20in%20precipitation%20outcome%20during%20recent%20El%20Ni%5Cu00f1o%20winters%201983%2C%201998%2C%20and%202016.%20Improved%20understanding%20of%20recurrent%20atmospheric%20weather%20patterns%20could%20help%20to%20improve%20seasonal%20precipitation%20forecasts.%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Plain%20Language%20Summary%5Cn%20%20%20%20%20%20%20%20%20%20%20%20In%202017%20and%202023%2C%20California%20experienced%20unexpectedly%20wet%20conditions%20despite%20predictions%20of%20dry%20winters%20due%20to%20La%20Ni%5Cu00f1a.%20In%202016%2C%20seasonal%20predictions%20in%20California%20favored%20wet%20conditions%20due%20to%20the%20very%20strong%20El%20Ni%5Cu00f1o%2C%20but%20the%20season%20was%20normal%5Cu2010to%5Cu2010dry%20statewide.%20Understanding%20relationships%20between%20El%20Ni%5Cu00f1o%5C%2FLa%20Ni%5Cu00f1a%20and%20recurring%20atmospheric%20weather%20patterns%20driving%20individual%20storms%20is%20needed%20to%20improve%20seasonal%20forecasts.%20We%20studied%20historical%20relationships%20between%20weather%20patterns%20that%20bring%20rain%20and%20snow%20to%20the%20region%20and%20the%20El%20Ni%5Cu00f1o%20Southern%20Oscillation%20%28ENSO%29.%20We%20find%20ENSO%20influences%20important%20characteristics%20of%20weather%20patterns%20once%20they%20make%20landfall%20in%20California%2C%20making%20El%20Ni%5Cu00f1o%20storms%20generally%20wetter%20in%20coastal%20southern%20California%20and%20Desert%20Southwest.%20However%2C%20ENSO%20does%20not%20strongly%20affect%20how%20often%20these%20patterns%20occur%20in%20a%20season%2C%20which%20makes%20seasonal%20precipitation%20forecasts%20challenging.%20The%20frequency%20of%20certain%20weather%20patterns%20not%20tied%20to%20ENSO%20played%20important%20roles%20in%20the%20unusual%20rainfall%20of%202017%2C%20the%20heavy%20snowfall%20of%202023%2C%20and%20the%20drier%20than%20expected%20winter%20of%202016.%20Understanding%20these%20weather%20patterns%20provides%20operationally%20and%20scientifically%20relevant%20context%20for%20future%20seasonal%20forecasts%20by%20highlighting%20that%20while%20ENSO%20only%20minimally%20influences%20the%20frequency%20of%20certain%20impactful%20storm%20types%2C%20it%20does%20change%20the%20precipitation%20characteristics%20of%20these%20storms.%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Key%20Points%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Weather%20regime%20type%20and%20frequency%20are%20key%20drivers%20of%20winter%20seasons%20with%20anomalous%20precipitation%20and%5C%2For%20snow%20accumulation%20in%20California%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20ENSO%20does%20not%20modulate%20the%20seasonal%20frequency%20of%20weather%20regimes%20impacting%20the%20coast%2C%20presenting%20a%20challenge%20for%20seasonal%20forecasting%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20ENSO%20modulates%20synoptic%20circulation%20characteristics%20of%20key%20weather%20regimes%20which%20produces%20the%20canonical%20ENSO%5Cu2010precipitation%20relationship%22%2C%22date%22%3A%222024-07-28%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1029%5C%2F2024GL110326%22%2C%22ISSN%22%3A%220094-8276%2C%201944-8007%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fagupubs.onlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1029%5C%2F2024GL110326%22%2C%22collections%22%3A%5B%223BVIFSK4%22%2C%227J6PFJNF%22%2C%228U6EVDVF%22%2C%22FCUZWX58%22%2C%22SS6XDERI%22%5D%2C%22dateModified%22%3A%222024-09-04T17%3A40%3A49Z%22%7D%7D%2C%7B%22key%22%3A%22PI7DXE7S%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Martens%20et%20al.%22%2C%22parsedDate%22%3A%222024-07-16%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EMartens%2C%20H.%20R.%2C%20Lau%2C%20N.%2C%20Swarr%2C%20M.%20J.%2C%20Argus%2C%20D.%20F.%2C%20Cao%2C%20Q.%2C%20Young%2C%20Z.%20M.%2C%20Borsa%2C%20A.%20A.%2C%20Pan%2C%20M.%2C%20Wilson%2C%20A.%20M.%2C%20Knappe%2C%20E.%2C%20%3Cstrong%3ERalph%3C%5C%2Fstrong%3E%2C%20F.%20M.%2C%20%26amp%3B%20Gardner%2C%20W.%20P.%20%282024%29.%20GNSS%20Geodesy%20Quantifies%20Water%26%23x2010%3BStorage%20Gains%20and%20Drought%20Improvements%20in%20California%20Spurred%20by%20Atmospheric%20Rivers.%20%3Ci%3EGeophysical%20Research%20Letters%3C%5C%2Fi%3E%2C%20%3Ci%3E51%3C%5C%2Fi%3E%2813%29%2C%20e2023GL107721.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2023GL107721%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2023GL107721%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22GNSS%20Geodesy%20Quantifies%20Water%5Cu2010Storage%20Gains%20and%20Drought%20Improvements%20in%20California%20Spurred%20by%20Atmospheric%20Rivers%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Hilary%20R.%22%2C%22lastName%22%3A%22Martens%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nicholas%22%2C%22lastName%22%3A%22Lau%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthew%20J.%22%2C%22lastName%22%3A%22Swarr%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Donald%20F.%22%2C%22lastName%22%3A%22Argus%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Qian%22%2C%22lastName%22%3A%22Cao%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Zachary%20M.%22%2C%22lastName%22%3A%22Young%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Adrian%20A.%22%2C%22lastName%22%3A%22Borsa%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ming%22%2C%22lastName%22%3A%22Pan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Anna%20M.%22%2C%22lastName%22%3A%22Wilson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ellen%22%2C%22lastName%22%3A%22Knappe%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%20Martin%22%2C%22lastName%22%3A%22Ralph%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22W.%20Payton%22%2C%22lastName%22%3A%22Gardner%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Atmospheric%20rivers%20%28ARs%29%20deliver%20significant%20and%20essential%20precipitation%20to%20the%20western%20United%20States%20%28US%29%20with%20consequential%20interannual%20variability.%20The%20intensity%20and%20frequency%20of%20ARs%20strongly%20influence%20reservoir%20levels%2C%20mountain%20snowpack%2C%20and%20groundwater%20recharge%2C%20which%20are%20key%20drivers%20of%20water%5Cu2010resource%20availability%20and%20natural%20hazards.%20Between%20October%202022%20and%20April%202023%2C%20western%20states%20experienced%20exceptionally%20heavy%20precipitation%20from%20several%20families%20of%20powerful%20ARs.%20Using%20observations%20of%20surface%5Cu2010loading%20deformation%20from%20Global%20Navigation%20Satellite%20Systems%2C%20we%20find%20that%20terrestrial%20water%5Cu2010storage%20gains%20exceeded%20100%25%20of%20normal%20within%20vital%20California%20watersheds.%20Independent%20water%5Cu2010storage%20solutions%20derived%20from%20different%20data%5Cu2010analysis%20and%20inversion%20methods%20provide%20an%20important%20measure%20of%20precision.%20The%20sustained%20storage%20increases%2C%20which%20we%20show%20are%20closely%20associated%20with%20ARs%20at%20daily%5Cu2010to%5Cu2010weekly%20timescales%2C%20alleviated%20both%20meteorological%20and%20hydrological%20drought%20conditions%20in%20the%20region%2C%20with%20a%20lag%20in%20hydrological%5Cu2010drought%20improvements.%20Quantifying%20water%5Cu2010storage%20recovery%20associated%20with%20extreme%20precipitation%20after%20drought%20advances%20understanding%20of%20an%20increasingly%20variable%20hydrologic%20cycle.%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Plain%20Language%20Summary%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Human%20communities%20in%20the%20western%20United%20States%20rely%20on%20seasonal%20mountain%20snowpack%20and%20precipitation%20for%20agriculture%2C%20industry%2C%20and%20the%20civilian%20water%20supply.%20Over%20the%20past%20two%20decades%2C%20increasingly%20severe%20drought%20conditions%20have%20plagued%20western%20states.%20In%20this%20study%2C%20we%20investigate%20gains%20in%20water%20storage%20related%20to%20recent%20atmospheric%20rivers%2C%20which%20are%20long%20and%20narrow%20corridors%20of%20atmospheric%20moisture%20associated%20with%20extreme%20precipitation%2C%20using%20an%20interdisciplinary%20approach%20called%20hydrogeodesy.%20Hydrogeodesy%20uses%20satellite%5Cu2010%20and%20ground%5Cu2010based%20sensors%20to%20track%20subtle%20changes%20in%20the%20shape%20of%20the%20Earth%20and%20its%20gravity%20field%20caused%20by%20the%20redistribution%20of%20water%20through%20the%20Earth%20system.%20By%20treating%20the%20Earth%20as%20a%20natural%20scale%2C%20we%20can%20infer%20how%20much%20water%20is%20gained%20or%20lost%20from%20a%20particular%20area%20over%20time.%20Advancing%20our%20understanding%20of%20water%5Cu2010resource%20availability%2C%20the%20Earth%27s%20water%20cycle%2C%20and%20the%20Earth%27s%20changing%20climate%20is%20critical%20for%20improving%20water%5Cu2010resource%20management%2C%20sustaining%20natural%20ecosystems%2C%20and%20mitigating%20natural%20hazards.%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Key%20Points%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20We%20use%20surface%20deformation%20to%20assess%20changes%20in%20terrestrial%20water%20storage%20%28TWS%29%20associated%20with%20families%20of%20strong%20atmospheric%20rivers%20%28ARs%29%20in%202022%5Cu20132023%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Large%20jumps%20in%20mountain%20water%20storage%20from%20ARs%20spurred%20recoveries%20from%20major%20California%20droughts%20in%202012%5Cu20132015%20and%202019%5Cu20132022%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Early%5Cu2010season%20water%5Cu2010storage%20gains%2C%20driven%20by%20ARs%2C%20nearly%20equal%20precipitation%20inputs%2C%20indicating%20extensive%20reservoir%20recharge%22%2C%22date%22%3A%222024-07-16%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1029%5C%2F2023GL107721%22%2C%22ISSN%22%3A%220094-8276%2C%201944-8007%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fagupubs.onlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1029%5C%2F2023GL107721%22%2C%22collections%22%3A%5B%22B6MWY4Y3%22%2C%22H3FG68WV%22%2C%223BVIFSK4%22%2C%22YJE5A9SE%22%5D%2C%22dateModified%22%3A%222024-07-12T18%3A38%3A14Z%22%7D%7D%2C%7B%22key%22%3A%22DWM2PI65%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Wang%20et%20al.%22%2C%22parsedDate%22%3A%222024-06-12%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EWang%2C%20J.%2C%20DeFlorio%2C%20M.%20J.%2C%20Gershunov%2C%20A.%2C%20Guirguis%2C%20K.%2C%20Delle%20Monache%2C%20L.%2C%20%26amp%3B%20%3Cstrong%3ERalph%3C%5C%2Fstrong%3E%2C%20F.%20M.%20%282024%29.%20Association%20of%20western%20US%20compound%20hydrometeorological%20extremes%20with%20Madden-Julian%20oscillation%20and%20ENSO%20interaction.%20%3Ci%3ECommunications%20Earth%20%26amp%3B%20Environment%3C%5C%2Fi%3E%2C%20%3Ci%3E5%3C%5C%2Fi%3E%281%29%2C%20314.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs43247-024-01449-w%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs43247-024-01449-w%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Association%20of%20western%20US%20compound%20hydrometeorological%20extremes%20with%20Madden-Julian%20oscillation%20and%20ENSO%20interaction%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jiabao%22%2C%22lastName%22%3A%22Wang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Michael%20J.%22%2C%22lastName%22%3A%22DeFlorio%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alexander%22%2C%22lastName%22%3A%22Gershunov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Kristen%22%2C%22lastName%22%3A%22Guirguis%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Luca%22%2C%22lastName%22%3A%22Delle%20Monache%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%20Martin%22%2C%22lastName%22%3A%22Ralph%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Extreme%20weather%20and%20climate%20events%20can%20have%20substantial%20impacts%20on%20society%20and%20the%20environment.%20Compound%20extremes%20%28two%20or%20more%20extreme%20events%20occurring%20simultaneously%20or%20successively%29%20may%20exert%20even%20larger%20impacts%20than%20individual%20events.%20Here%20we%20examine%20physical%20drivers%20behind%20variability%20in%20hydrometeorological%20%28precipitation%20and%20temperature%29%20compound%20extremes%20on%20subseasonal-to-seasonal%20timescales.%20Observational%20evidence%20presented%20here%20through%20composite%20analysis%20indicates%20that%20compound%20extreme%20frequency%20is%20linked%20to%20the%20Madden-Julian%20oscillation%2C%20a%20unique%20type%20of%20organized%20tropical%20convection%20varying%20primarily%20on%20subseasonal-to-seasonal%20timescales.%20The%20linkage%20between%20Madden-Julian%20oscillation%20and%20compound%20extremes%20is%20largely%20dependent%20on%20ENSO%20phases%2C%20which%20can%20be%20seen%20through%20different%20magnitudes%20or%20changes%20in%20sign%20of%20the%20canonical%20relationship%20conditioned%20on%20ENSO%20states.%20Similarly%2C%20the%20Madden-Julian%20oscillation%20can%20interrupt%20the%20canonical%20ENSO-compound%20extreme%20relationship.%20Our%20results%20suggest%20a%20potential%20route%20to%20improve%20subseasonal-to-seasonal%20prediction%20of%20western%20US%20compound%20extremes%20by%20considering%20the%20combined%20effect%20of%20both%20Madden-Julian%20oscillation%20and%20ENSO.%22%2C%22date%22%3A%222024-06-12%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1038%5C%2Fs43247-024-01449-w%22%2C%22ISSN%22%3A%222662-4435%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.nature.com%5C%2Farticles%5C%2Fs43247-024-01449-w%22%2C%22collections%22%3A%5B%223BVIFSK4%22%2C%227J6PFJNF%22%2C%22GS9TJSRH%22%2C%228U6EVDVF%22%2C%22FCUZWX58%22%5D%2C%22dateModified%22%3A%222024-07-12T17%3A20%3A43Z%22%7D%7D%2C%7B%22key%22%3A%222WKP27YQ%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Ghazvinian%20et%20al.%22%2C%22parsedDate%22%3A%222024-04-30%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EGhazvinian%2C%20M.%2C%20Delle%20Monache%2C%20L.%2C%20Afzali%20Gorooh%2C%20V.%2C%20Steinhoff%2C%20D.%2C%20Sengupta%2C%20A.%2C%20Hu%2C%20W.%2C%20Simpson%2C%20M.%2C%20Weihs%2C%20R.%2C%20Papadopoulos%2C%20C.%2C%20Mulrooney%2C%20P.%2C%20Kawzenuk%2C%20B.%2C%20Mascioli%2C%20N.%2C%20%26amp%3B%20%3Cstrong%3ERalph%3C%5C%2Fstrong%3E%2C%20F.%20M.%20%282024%29.%20Deep%20Learning%20of%20a%20200-member%20Ensemble%20with%20a%20Limited%20Historical%20Training%20to%20Improve%20the%20Prediction%20of%20Extreme%20Precipitation%20Events.%20%3Ci%3EMonthly%20Weather%20Review%3C%5C%2Fi%3E.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1175%5C%2FMWR-D-23-0277.1%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1175%5C%2FMWR-D-23-0277.1%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Deep%20Learning%20of%20a%20200-member%20Ensemble%20with%20a%20Limited%20Historical%20Training%20to%20Improve%20the%20Prediction%20of%20Extreme%20Precipitation%20Events%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mohammadvaghef%22%2C%22lastName%22%3A%22Ghazvinian%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Luca%22%2C%22lastName%22%3A%22Delle%20Monache%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Vesta%22%2C%22lastName%22%3A%22Afzali%20Gorooh%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Daniel%22%2C%22lastName%22%3A%22Steinhoff%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Agniv%22%2C%22lastName%22%3A%22Sengupta%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Weiming%22%2C%22lastName%22%3A%22Hu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthew%22%2C%22lastName%22%3A%22Simpson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Rachel%22%2C%22lastName%22%3A%22Weihs%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Caroline%22%2C%22lastName%22%3A%22Papadopoulos%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Patrick%22%2C%22lastName%22%3A%22Mulrooney%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Brian%22%2C%22lastName%22%3A%22Kawzenuk%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nora%22%2C%22lastName%22%3A%22Mascioli%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Fred%20Martin%22%2C%22lastName%22%3A%22Ralph%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20This%20study%20introduces%20a%20deep%20learning%20%28DL%29%20scheme%20to%20generate%20reliable%20and%20skillful%20probabilistic%20quantitative%20precipitation%20forecasts%20%28PQPFs%29%20in%20a%20postprocessing%20framework.%20Enhanced%20machine%20learning%20model%20architecture%20and%20training%20mechanisms%20are%20proposed%20to%20improve%20reliability%20and%20skill%20of%20PQPFs%20while%20permitting%20computationally%20efficient%20model%20fitting%20using%20a%20short%20training%20dataset.%20The%20methodology%20is%20applied%20to%20postprocessing%20of%2024h%20accumulated%20PQPFs%20from%20an%20ensemble%20forecast%20system%20recently%20introduced%20by%20the%20Center%20for%20Western%20Weather%20and%20Water%20Extremes%20%28CW3E%29%20and%20for%20lead%20times%20from%20one%20to%20six%20days.%20The%20ensemble%20system%20was%20designed%20based%20on%20a%20high-resolution%20version%20of%20the%20Weather%20Research%20and%20Forecasting%20%28WRF%29%20model%2C%20named%20West-WRF%2C%20to%20produce%20a%20200-member%20ensemble%20in%20near%20real-time%20%28NRT%29%20over%20the%20Western%20U.S.%20during%20the%20boreal%20cool%20seasons%20to%20support%20forecastinformed%20reservoir%20operations%20%28FIRO%29%20and%20studies%20of%20prediction%20of%20heavy-to-extreme%20events.%20Postprocessed%20PQPFs%20are%20compared%20with%20those%20from%20the%20raw%20West-WRF%20ensemble%2C%20the%20operational%20Global%20Ensemble%20Forecast%20System%20%28GEFSv12%29%20as%20well%20as%20the%20ensemble%20from%20the%20European%20Centre%20for%20Medium-Range%20Weather%20Forecasts%20%28ECMWF%29.%20As%20an%20additional%20baseline%2C%20we%20provide%20PQPFs%20verification%20metrics%20from%20a%20recently%20developed%20neural%20network%20postprocessing%20scheme%20proposed%20by%20Ghazvinian%20et%20al.%20%282022%29.%20Results%20demonstrate%20that%20skill%20of%20postprocessed%20forecasts%20significantly%20outperform%20PQPFs%20and%20deterministic%20forecasts%20from%20raw%20ensembles%20and%20the%20recently%20developed%20algorithm.%20The%20resulting%20PQPFs%20broadly%20improve%20upon%20the%20reliability%20and%20skill%20of%20baselines%20in%20predicting%20heavy%20to%20extreme%20precipitation%20%28e.g.%2C%20%3E%2075%20mm%29%20across%20all%20lead%20times%20while%20maintaining%20the%20spatial%20structure%20of%20the%20high-resolution%20raw%20ensemble.%22%2C%22date%22%3A%222024-04-30%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1175%5C%2FMWR-D-23-0277.1%22%2C%22ISSN%22%3A%220027-0644%2C%201520-0493%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fjournals.ametsoc.org%5C%2Fview%5C%2Fjournals%5C%2Fmwre%5C%2Faop%5C%2FMWR-D-23-0277.1%5C%2FMWR-D-23-0277.1.xml%22%2C%22collections%22%3A%5B%223BVIFSK4%22%2C%22GS9TJSRH%22%2C%225VS4ETHR%22%5D%2C%22dateModified%22%3A%222024-05-20T16%3A01%3A36Z%22%7D%7D%2C%7B%22key%22%3A%223ACQEMDF%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Li%20et%20al.%22%2C%22parsedDate%22%3A%222024-01-04%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ELi%2C%20L.%2C%20Cannon%2C%20F.%2C%20Mazloff%2C%20M.%20R.%2C%20Subramanian%2C%20A.%20C.%2C%20Wilson%2C%20A.%20M.%2C%20%26amp%3B%20%3Cstrong%3ERalph%3C%5C%2Fstrong%3E%2C%20F.%20M.%20%282024%29.%20Impact%20of%20atmospheric%20rivers%20on%20Arctic%20sea%20ice%20variations.%20%3Ci%3EThe%20Cryosphere%3C%5C%2Fi%3E%2C%20%3Ci%3E18%3C%5C%2Fi%3E%281%29%2C%20121%26%23x2013%3B137.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.5194%5C%2Ftc-18-121-2024%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.5194%5C%2Ftc-18-121-2024%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Impact%20of%20atmospheric%20rivers%20on%20Arctic%20sea%20ice%20variations%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Linghan%22%2C%22lastName%22%3A%22Li%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Forest%22%2C%22lastName%22%3A%22Cannon%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthew%20R.%22%2C%22lastName%22%3A%22Mazloff%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Aneesh%20C.%22%2C%22lastName%22%3A%22Subramanian%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Anna%20M.%22%2C%22lastName%22%3A%22Wilson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Fred%20Martin%22%2C%22lastName%22%3A%22Ralph%22%7D%5D%2C%22abstractNote%22%3A%22Abstract.%20Arctic%20sea%20ice%20has%20been%20declining%20rapidly%20in%20recent%20decades.%20We%20investigate%20how%20the%20poleward%20transport%20of%20moisture%20and%20heat%20from%20lower%20latitudes%20through%20atmospheric%20rivers%20%28ARs%29%20influences%20Arctic%20sea%20ice%20variations.%20We%20use%20hourly%20ERA5%20%28fifth-generation%20European%20Reanalysis%29%20data%20for%201981%5Cu20132020%20at%200.25%5Cu2218%5Cu2009%5Cu00d7%5Cu20090.25%5Cu2218%20resolution%20to%20examine%20the%20meteorological%20conditions%20and%20sea%20ice%20changes%20associated%20with%20ARs%20in%20the%20Arctic.%20In%20the%20years%202012%20and%202020%2C%20which%20had%20an%20extremely%20low%20summer%20Arctic%20sea%20ice%20extent%2C%20we%20show%20that%20the%20individual%20AR%20events%20associated%20with%20large%20cyclones%20initiate%20a%20rapid%20sea%20ice%20decrease%20through%20turbulent%20heat%20fluxes%20and%20winds.%20We%20carry%20out%20further%20statistical%20analysis%20of%20the%20meteorological%20conditions%20and%20sea%20ice%20variations%20for%201981%5Cu20132020%20over%20the%20entire%20Arctic%20Ocean.%20We%20find%20that%20on%20weather%20timescales%20the%20atmospheric%20moisture%20content%20anticorrelates%20significantly%20with%20the%20sea%20ice%20concentration%20tendency%20almost%20everywhere%20in%20the%20Arctic%20Ocean%2C%20while%20the%20dynamic%20sea%20ice%20motion%20driven%20by%20northward%20winds%20further%20reduces%20the%20sea%20ice%20concentration.%22%2C%22date%22%3A%222024-01-04%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.5194%5C%2Ftc-18-121-2024%22%2C%22ISSN%22%3A%221994-0424%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Ftc.copernicus.org%5C%2Farticles%5C%2F18%5C%2F121%5C%2F2024%5C%2F%22%2C%22collections%22%3A%5B%22H3FG68WV%22%2C%223BVIFSK4%22%5D%2C%22dateModified%22%3A%222024-03-20T22%3A11%3A11Z%22%7D%7D%2C%7B%22key%22%3A%22LMT9DDR6%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Ralph%20et%20al.%22%2C%22parsedDate%22%3A%222024%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3E%3Cstrong%3ERalph%3C%5C%2Fstrong%3E%2C%20F.%20M.%2C%20Simpson%2C%20M.%2C%20Iacobellis%2C%20S.%2C%20Cordeira%2C%20J.%20M.%2C%20Cannon%2C%20F.%2C%20Cobb%2C%20A.%2C%20Michaelis%2C%20A.%20C.%2C%20%26amp%3B%20Delle%20Monache%2C%20L.%20%282024%29.%20Dropsonde%20Observations%20of%20the%20Stable%20Marine%20Boundary%20Layer%20beneath%20Atmospheric%20Rivers.%20%3Ci%3EMonthly%20Weather%20Review%3C%5C%2Fi%3E%2C%20%3Ci%3E152%3C%5C%2Fi%3E%2812%29%2C%202735%26%23x2013%3B2751.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1175%5C%2FMWR-D-23-0207.1%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1175%5C%2FMWR-D-23-0207.1%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Dropsonde%20Observations%20of%20the%20Stable%20Marine%20Boundary%20Layer%20beneath%20Atmospheric%20Rivers%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%20M.%22%2C%22lastName%22%3A%22Ralph%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Simpson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Iacobellis%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%20M.%22%2C%22lastName%22%3A%22Cordeira%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Cannon%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Cobb%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%20C.%22%2C%22lastName%22%3A%22Michaelis%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%22%2C%22lastName%22%3A%22Delle%20Monache%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20An%20important%20source%20of%20errors%20in%20predicting%20landfalling%20atmospheric%20rivers%20%28ARs%29%20and%20their%20associated%20extreme%20precipitation%20and%20streamflow%20are%20inaccuracies%20in%20model%20initial%20conditions%20in%20ARs%20offshore.%20These%20inaccuracies%20are%20particularly%20evident%20in%20the%20marine%20boundary%20layer%20%28MBL%29%20where%20the%20tendency%20of%20ARs%20to%20transport%20warm%20air%20poleward%20over%20progressively%20cooler%20sea%20surface%20temperatures%20%28SSTs%29%20generates%20a%20stable%20MBL%20%28SMBL%29.%20The%20SMBL%5Cu2019s%20vertical%20structure%20and%20key%20modulating%20processes%20are%20documented%20using%20%3E1000%20dropsondes%20along%2099%20transects%20of%20ARs%20from%20the%20AR%20reconnaissance%20and%20CalWater%20field%20campaigns.%20The%20SMBL%20depth%2C%20modulated%20by%20sensible%20heat%20loss%20to%20the%20ocean%2C%20is%20typically%20300%5Cu2013800%20m%20in%20the%20AR%20core%2C%20with%20vertical%20wind%20shears%20ranging%20from%205%20to%2050%20m%20s%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu22121%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20km%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu22121%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2C%20representing%20a%20highly%20variable%20decoupling%20of%20the%20AR%20aloft%20from%20conditions%20at%20the%20ocean%20surface.%20Simulated%20backward%20air%20parcel%20trajectories%20originating%20from%20dropsonde%20locations%20within%20the%20AR%20core%20are%20used%20to%20calculate%20the%2024-h%20change%20in%20SST%20experienced%20by%20an%20air%20parcel%20%28DSST24%29%20beneath%20each%20AR.%20The%20DSST24%20varies%20from%20%5Cu221213%5Cu00b0%20to%20%2B2%5Cu00b0C%20and%20is%20directly%20related%20to%20the%20strength%20of%20the%20AR%20and%20its%20orientation%20relative%20to%20the%20SST%20gradient.%20The%20DSST24%2C%20therefore%2C%20distinguishes%20weak%20and%20strong%20decoupling%20regimes%20%28WDR%20and%20SDR%29.%20In%20SDR%20cases%2C%20relative%20to%20WDR%20cases%2C%20the%20SMBL%20is%20characterized%20by%20greater%20sensible%20heat%20loss%20to%20the%20ocean%2C%20as%20well%20as%20stronger%20static%20stability%2C%20vertical%20wind%20shear%2C%20low-level%20jet%2C%20and%20horizontal%20water%20vapor%20transport.%20In%20SDR%20cases%2C%20the%20SMBL%20is%20deeper%20in%20the%20core%20than%20in%20adjacent%20warm%20and%20cold%20sectors.%22%2C%22date%22%3A%2212%5C%2F2024%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1175%5C%2FMWR-D-23-0207.1%22%2C%22ISSN%22%3A%220027-0644%2C%201520-0493%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fjournals.ametsoc.org%5C%2Fview%5C%2Fjournals%5C%2Fmwre%5C%2F152%5C%2F12%5C%2FMWR-D-23-0207.1.xml%22%2C%22collections%22%3A%5B%2244X4EX84%22%2C%223BVIFSK4%22%2C%22GS9TJSRH%22%2C%22SSJEK2D9%22%5D%2C%22dateModified%22%3A%222025-02-21T23%3A35%3A16Z%22%7D%7D%2C%7B%22key%22%3A%2283RHRLG6%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Bromwich%20et%20al.%22%2C%22parsedDate%22%3A%222024%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EBromwich%2C%20D.%20H.%2C%20Gorodetskaya%2C%20I.%20V.%2C%20Carpentier%2C%20S.%2C%20Alexander%2C%20S.%2C%20Bazile%2C%20E.%2C%20Heinrich%2C%20V.%20J.%2C%20Massonnet%2C%20F.%2C%20Powers%2C%20J.%20G.%2C%20Carrasco%2C%20J.%20F.%2C%20Cayette%2C%20A.%2C%20Choi%2C%20T.%2C%20Chyhareva%2C%20A.%2C%20Colwell%2C%20S.%20R.%2C%20Cordeira%2C%20J.%20M.%2C%20Cordero%2C%20R.%20R.%2C%20Doerenbecher%2C%20A.%2C%20Dur%26%23xE1%3Bn-Alarc%26%23xF3%3Bn%2C%20C.%2C%20French%2C%20W.%20J.%20R.%2C%20Gonzalez-Herrero%2C%20S.%2C%20%26%23x2026%3B%20Zou%2C%20X.%20%282024%29.%20Winter%20Targeted%20Observing%20Periods%20during%20the%20Year%20of%20Polar%20Prediction%20in%20the%20Southern%20Hemisphere%20%28YOPP-SH%29.%20%3Ci%3EBulletin%20of%20the%20American%20Meteorological%20Society%3C%5C%2Fi%3E%2C%20%3Ci%3E105%3C%5C%2Fi%3E%289%29%2C%20E1662%26%23x2013%3BE1684.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1175%5C%2FBAMS-D-22-0249.1%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1175%5C%2FBAMS-D-22-0249.1%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Winter%20Targeted%20Observing%20Periods%20during%20the%20Year%20of%20Polar%20Prediction%20in%20the%20Southern%20Hemisphere%20%28YOPP-SH%29%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22David%20H.%22%2C%22lastName%22%3A%22Bromwich%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Irina%20V.%22%2C%22lastName%22%3A%22Gorodetskaya%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Scott%22%2C%22lastName%22%3A%22Carpentier%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Simon%22%2C%22lastName%22%3A%22Alexander%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Eric%22%2C%22lastName%22%3A%22Bazile%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Victoria%20J.%22%2C%22lastName%22%3A%22Heinrich%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Francois%22%2C%22lastName%22%3A%22Massonnet%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jordan%20G.%22%2C%22lastName%22%3A%22Powers%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jorge%20F.%22%2C%22lastName%22%3A%22Carrasco%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Arthur%22%2C%22lastName%22%3A%22Cayette%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Taejin%22%2C%22lastName%22%3A%22Choi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Anastasiia%22%2C%22lastName%22%3A%22Chyhareva%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Steven%20R.%22%2C%22lastName%22%3A%22Colwell%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jason%20M.%22%2C%22lastName%22%3A%22Cordeira%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Raul%20R.%22%2C%22lastName%22%3A%22Cordero%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alexis%22%2C%22lastName%22%3A%22Doerenbecher%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Claudio%22%2C%22lastName%22%3A%22Dur%5Cu00e1n-Alarc%5Cu00f3n%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22W.%20John%20R.%22%2C%22lastName%22%3A%22French%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sergi%22%2C%22lastName%22%3A%22Gonzalez-Herrero%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Adrien%22%2C%22lastName%22%3A%22Guyot%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Thomas%22%2C%22lastName%22%3A%22Haiden%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Naohiko%22%2C%22lastName%22%3A%22Hirasawa%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Paola%20Rodriguez%22%2C%22lastName%22%3A%22Imazio%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Brian%22%2C%22lastName%22%3A%22Kawzenuk%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Svitlana%22%2C%22lastName%22%3A%22Krakovska%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthew%20A.%22%2C%22lastName%22%3A%22Lazzara%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mariana%20Fontolan%22%2C%22lastName%22%3A%22Litell%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Kevin%20W.%22%2C%22lastName%22%3A%22Manning%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Kimberley%22%2C%22lastName%22%3A%22Norris%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sang-Jong%22%2C%22lastName%22%3A%22Park%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%20Martin%22%2C%22lastName%22%3A%22Ralph%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Penny%20M.%22%2C%22lastName%22%3A%22Rowe%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Qizhen%22%2C%22lastName%22%3A%22Sun%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Vito%22%2C%22lastName%22%3A%22Vitale%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jonathan%20D.%22%2C%22lastName%22%3A%22Wille%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Zhenhai%22%2C%22lastName%22%3A%22Zhang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xun%22%2C%22lastName%22%3A%22Zou%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20The%20Year%20of%20Polar%20Prediction%20in%20the%20Southern%20Hemisphere%20%28YOPP-SH%29%20held%20seven%20targeted%20observing%20periods%20%28TOPs%29%20during%20the%202022%20austral%20winter%20to%20enhance%20atmospheric%20predictability%20over%20the%20Southern%20Ocean%20and%20Antarctica.%20The%20TOPs%20of%205%5Cu201310-day%20duration%20each%20featured%20the%20release%20of%20additional%20radiosonde%20balloons%2C%20more%20than%20doubling%20the%20routine%20sounding%20program%20at%20the%2024%20participating%20stations%20run%20by%2014%20nations%2C%20together%20with%20process-oriented%20observations%20at%20selected%20sites.%20These%20extra%20sounding%20data%20are%20evaluated%20for%20their%20impact%20on%20forecast%20skill%20via%20data%20denial%20experiments%20with%20the%20goal%20of%20refining%20the%20observing%20system%20to%20improve%20numerical%20weather%20prediction%20for%20winter%20conditions.%20Extensive%20observations%20focusing%20on%20clouds%20and%20precipitation%20primarily%20during%20atmospheric%20river%20%28AR%29%20events%20are%20being%20applied%20to%20refine%20model%20microphysical%20parameterizations%20for%20the%20ubiquitous%20mixed-phase%20clouds%20that%20frequently%20impact%20coastal%20Antarctica.%20Process%20studies%20are%20being%20facilitated%20by%20high-time-resolution%20series%20of%20observations%20and%20forecast%20model%20output%20via%20the%20YOPP%20Model%20Intercomparison%20and%20Improvement%20Project%20%28YOPPsiteMIIP%29.%20Parallel%20investigations%20are%20broadening%20the%20scope%20and%20impact%20of%20the%20YOPP-SH%20winter%20TOPs.%20Studies%20of%20the%20Antarctic%20tourist%20industry%5Cu2019s%20use%20of%20weather%20services%20show%20the%20scope%20for%20much%20greater%20awareness%20of%20the%20availability%20of%20forecast%20products%20and%20the%20skill%20they%20exhibit.%20The%20Sea%20Ice%20Prediction%20Network%20South%20%28SIPN%20South%29%20analysis%20of%20predictions%20of%20the%20sea%20ice%20growth%20period%20reveals%20that%20the%20forecast%20skill%20is%20superior%20to%20the%20sea%20ice%20retreat%20phase.%22%2C%22date%22%3A%2209%5C%2F2024%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1175%5C%2FBAMS-D-22-0249.1%22%2C%22ISSN%22%3A%220003-0007%2C%201520-0477%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fjournals.ametsoc.org%5C%2Fview%5C%2Fjournals%5C%2Fbams%5C%2F105%5C%2F9%5C%2FBAMS-D-22-0249.1.xml%22%2C%22collections%22%3A%5B%2244X4EX84%22%2C%223BVIFSK4%22%5D%2C%22dateModified%22%3A%222024-11-08T17%3A19%3A24Z%22%7D%7D%2C%7B%22key%22%3A%22G7QPDY96%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Zheng%20et%20al.%22%2C%22parsedDate%22%3A%222024%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EZheng%2C%20M.%2C%20Delle%20Monache%2C%20L.%2C%20Wu%2C%20X.%2C%20Kawzenuk%2C%20B.%2C%20%3Cstrong%3ERalph%3C%5C%2Fstrong%3E%2C%20F.%20M.%2C%20Zhu%2C%20Y.%2C%20Torn%2C%20R.%2C%20Tallapragada%2C%20V.%20S.%2C%20Zhang%2C%20Z.%2C%20Wu%2C%20K.%2C%20%26amp%3B%20Wang%2C%20J.%20%282024%29.%20Impact%20of%20Atmospheric%20River%20Reconnaissance%20Dropsonde%20Data%20on%20the%20Assimilation%20of%20Satellite%20Radiance%20Data%20in%20GFS.%20%3Ci%3EJournal%20of%20Atmospheric%20and%20Oceanic%20Technology%3C%5C%2Fi%3E%2C%20%3Ci%3E41%3C%5C%2Fi%3E%289%29%2C%20819%26%23x2013%3B832.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1175%5C%2FJTECH-D-23-0167.1%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1175%5C%2FJTECH-D-23-0167.1%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Impact%20of%20Atmospheric%20River%20Reconnaissance%20Dropsonde%20Data%20on%20the%20Assimilation%20of%20Satellite%20Radiance%20Data%20in%20GFS%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Minghua%22%2C%22lastName%22%3A%22Zheng%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Luca%22%2C%22lastName%22%3A%22Delle%20Monache%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xingren%22%2C%22lastName%22%3A%22Wu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Brian%22%2C%22lastName%22%3A%22Kawzenuk%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%20Martin%22%2C%22lastName%22%3A%22Ralph%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yanqiu%22%2C%22lastName%22%3A%22Zhu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ryan%22%2C%22lastName%22%3A%22Torn%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Vijay%20S.%22%2C%22lastName%22%3A%22Tallapragada%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Zhenhai%22%2C%22lastName%22%3A%22Zhang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Keqin%22%2C%22lastName%22%3A%22Wu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jia%22%2C%22lastName%22%3A%22Wang%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Satellites%20provide%20the%20largest%20dataset%20for%20monitoring%20the%20earth%20system%20and%20constraining%20analyses%20in%20numerical%20weather%20prediction%20models.%20A%20significant%20challenge%20for%20utilizing%20satellite%20radiances%20is%20the%20accurate%20estimation%20of%20their%20biases.%20High-accuracy%20nonradiance%20data%20are%20commonly%20employed%20to%20anchor%20radiance%20bias%20corrections.%20However%2C%20aside%20from%20the%20impacts%20of%20radio%20occultation%20data%20in%20the%20stratosphere%2C%20the%20influence%20of%20other%20types%20of%20%5Cu201canchor%5Cu201d%20observation%20data%20on%20radiance%20assimilation%20remains%20unclear.%20This%20study%20provides%20an%20assessment%20of%20impacts%20of%20dropsonde%20data%20collected%20during%20the%20Atmospheric%20River%20%28AR%29%20Reconnaissance%20program%2C%20which%20samples%20ARs%20over%20the%20northeast%20Pacific%2C%20on%20the%20radiance%20assimilation%20using%20the%20Global%20Forecast%20System%20%28GFS%29%20and%20Global%20Data%20Assimilation%20System%20at%20the%20National%20Centers%20for%20Environmental%20Prediction.%20The%20assimilation%20of%20this%20dropsonde%20dataset%20has%20proven%20crucial%20for%20providing%20enhanced%20anchoring%20for%20bias%20corrections%20and%20improving%20the%20model%20background%2C%20leading%20to%20an%20increase%20of%20%5Cu223c5%25%5Cu201310%25%20in%20the%20number%20of%20assimilated%20microwave%20radiance%20in%20the%20lower%20troposphere%5C%2Fmidtroposphere%20over%20the%20northeast%20Pacific%20and%20North%20America.%20The%20impact%20on%20tropospheric%20infrared%20radiance%20is%20not%20only%20small%20but%20also%20beneficial.%20Impacts%20of%20dropsondes%20on%20the%20use%20of%20stratospheric%20channels%20are%20minimal%20due%20to%20the%20absence%20of%20dropsonde%20observations%20at%20certain%20altitudes%2C%20such%20as%20aircraft%20flight%20levels%20%28e.g.%2C%20150%20hPa%29.%20Results%20in%20this%20study%20underscore%20the%20usefulness%20of%20dropsondes%2C%20along%20with%20other%20conventional%20data%2C%20in%20optimizing%20the%20assimilation%20of%20satellite%20radiance.%20This%20study%20reinforces%20the%20importance%20of%20a%20diverse%20observing%20network%20for%20accurate%20weather%20forecasting%20and%20highlights%20the%20specific%20benefits%20derived%20from%20integrating%20dropsonde%20data%20into%20radiance%20assimilation%20processes.%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Significance%20Statement%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20This%20study%20aims%20to%20evaluate%20the%20impact%20of%20aircraft%20reconnaissance%20dropsondes%20on%20the%20assimilation%20of%20satellite%20radiance%20data%2C%20utilizing%20observations%20from%20the%202020%20Atmospheric%20River%20Reconnaissance%20program.%20The%20key%20findings%20reveal%20a%20substantial%20enhancement%20in%20the%20model%20first%20guess%20and%20improved%20estimates%20of%20radiance%20biases.%20Notably%2C%20there%20is%20a%20significant%205%25%5Cu201310%25%20increase%20in%20microwave%20radiance%20observations%20over%20the%20northeastern%20Pacific%20and%20North%20America%2C%20with%20positive%20yet%20modest%20effects%20observed%20in%20tropospheric%20infrared%20radiance.%20These%20findings%20underscore%20the%20crucial%20role%20of%20atmospheric%20river%20reconnaissance%20dropsondes%20as%20anchor%20data%2C%20enhancing%20the%20assimilation%20of%20radiance%20observations.%20In%20essence%2C%20the%20inclusion%20of%20these%20dropsondes%20in%20routine%20networks%20is%20particularly%20valuable%20for%20optimizing%20data%20assimilation%20in%20regions%20with%20sparse%20observational%20data.%22%2C%22date%22%3A%2209%5C%2F2024%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1175%5C%2FJTECH-D-23-0167.1%22%2C%22ISSN%22%3A%220739-0572%2C%201520-0426%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fjournals.ametsoc.org%5C%2Fview%5C%2Fjournals%5C%2Fatot%5C%2F41%5C%2F9%5C%2FJTECH-D-23-0167.1.xml%22%2C%22collections%22%3A%5B%223BVIFSK4%22%2C%22GS9TJSRH%22%5D%2C%22dateModified%22%3A%222024-10-11T22%3A46%3A55Z%22%7D%7D%2C%7B%22key%22%3A%22YTEMKUV6%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Lin%20et%20al.%22%2C%22parsedDate%22%3A%222024%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ELin%2C%20W.-S.%2C%20Norris%2C%20J.%20R.%2C%20DeFlorio%2C%20M.%20J.%2C%20%26amp%3B%20%3Cstrong%3ERalph%3C%5C%2Fstrong%3E%2C%20F.%20M.%20%282024%29.%20Local%20and%20Object-Based%20Perspectives%20on%20Atmospheric%20Rivers%20Making%20Landfall%20on%20the%20Western%20North%20American%20Coastline.%20%3Ci%3EJournal%20of%20Hydrometeorology%3C%5C%2Fi%3E%2C%20%3Ci%3E25%3C%5C%2Fi%3E%285%29%2C%20673%26%23x2013%3B688.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1175%5C%2FJHM-D-22-0155.1%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1175%5C%2FJHM-D-22-0155.1%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Local%20and%20Object-Based%20Perspectives%20on%20Atmospheric%20Rivers%20Making%20Landfall%20on%20the%20Western%20North%20American%20Coastline%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Wen-Shu%22%2C%22lastName%22%3A%22Lin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Joel%20R.%22%2C%22lastName%22%3A%22Norris%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Michael%20J.%22%2C%22lastName%22%3A%22DeFlorio%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%20Martin%22%2C%22lastName%22%3A%22Ralph%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20We%20apply%20the%20Ralph%20et%5Cu00a0al.%20scaling%20method%20to%20a%20reanalysis%20dataset%20to%20examine%20the%20climatology%20and%20variability%20of%20landfalling%20atmospheric%20rivers%20%28ARs%29%20along%20the%20western%20North%20American%20coastline%20during%201980%5Cu20132019.%20The%20local%20perspective%20ranks%20AR%20intensity%20on%20a%20scale%20from%201%20%28weak%29%20to%205%20%28strong%29%20at%20each%20grid%20point%20along%20the%20coastline.%20The%20object-based%20perspective%20analyzes%20the%20characteristics%20of%20spatially%20independent%20and%20temporally%20coherent%20AR%20objects%20making%20landfall.%20The%20local%20perspective%20shows%20that%20the%20annual%20AR%20frequency%20of%20weak%20and%20strong%20ARs%20along%20the%20coast%20is%20highest%20in%20Oregon%20and%20Washington%20and%20lowest%20in%20Southern%20California.%20Strong%20ARs%20occur%20less%20frequently%20than%20weak%20ARs%20and%20have%20a%20more%20pronounced%20seasonal%20cycle.%20If%20those%20ARs%20with%20integrated%20water%20vapor%20transport%20%28IVT%29%20weaker%20than%20250%20kg%20m%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu22121%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20s%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu22121%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20are%20included%2C%20there%20is%20an%20enhanced%20seasonal%20cycle%20of%20AR%20frequency%20in%20Southern%20California%20and%20a%20seasonal%20cycle%20of%20AR%20intensity%20but%20not%20AR%20frequency%20in%20Alaska.%20The%20object-based%20analysis%20additionally%20indicates%20that%20strong%20ARs%20at%20lower%20latitudes%20are%20associated%20with%20stronger%20wind%20than%20weak%20ARs%20but%20similar%20moisture%2C%20whereas%20strong%20ARs%20at%20higher%20latitudes%20are%20associated%20with%20greater%20moisture%20than%20weak%20ARs%20but%20similar%20wind.%20For%20strong%20ARs%2C%20IVT%20at%20the%20core%20is%20largest%20for%20ARs%20in%20Oregon%20and%20Washington%20and%20smaller%20poleward%20and%20equatorward.%20Both%20IVT%20in%20the%20AR%20core%20and%20cumulative%20IVT%20along%20the%20coastline%20usually%20decrease%20after%20the%20first%20day%20of%20landfall%20for%20weak%20ARs%20but%20increase%20from%20the%20first%20to%20second%20day%20for%20strong%20ARs.%22%2C%22date%22%3A%2205%5C%2F2024%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1175%5C%2FJHM-D-22-0155.1%22%2C%22ISSN%22%3A%221525-755X%2C%201525-7541%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fjournals.ametsoc.org%5C%2Fview%5C%2Fjournals%5C%2Fhydr%5C%2F25%5C%2F5%5C%2FJHM-D-22-0155.1.xml%22%2C%22collections%22%3A%5B%223BVIFSK4%22%2C%22F2EHYIBZ%22%2C%22FCUZWX58%22%5D%2C%22dateModified%22%3A%222024-05-29T17%3A12%3A07Z%22%7D%7D%2C%7B%22key%22%3A%22FUUVVZTN%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Zheng%20et%20al.%22%2C%22parsedDate%22%3A%222024%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EZheng%2C%20M.%2C%20Torn%2C%20R.%2C%20Delle%20Monache%2C%20L.%2C%20Doyle%2C%20J.%2C%20%3Cstrong%3ERalph%3C%5C%2Fstrong%3E%2C%20F.%20M.%2C%20Tallapragada%2C%20V.%2C%20Davis%2C%20C.%2C%20Steinhoff%2C%20D.%2C%20Wu%2C%20X.%2C%20Wilson%2C%20A.%2C%20Papadopoulos%2C%20C.%2C%20%26amp%3B%20Mulrooney%2C%20P.%20%282024%29.%20An%20Assessment%20of%20Dropsonde%20Sampling%20Strategies%20for%20Atmospheric%20River%20Reconnaissance.%20%3Ci%3EMonthly%20Weather%20Review%3C%5C%2Fi%3E%2C%20%3Ci%3E152%3C%5C%2Fi%3E%283%29%2C%20811%26%23x2013%3B835.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1175%5C%2FMWR-D-23-0111.1%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1175%5C%2FMWR-D-23-0111.1%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22An%20Assessment%20of%20Dropsonde%20Sampling%20Strategies%20for%20Atmospheric%20River%20Reconnaissance%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Minghua%22%2C%22lastName%22%3A%22Zheng%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ryan%22%2C%22lastName%22%3A%22Torn%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Luca%22%2C%22lastName%22%3A%22Delle%20Monache%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22James%22%2C%22lastName%22%3A%22Doyle%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Fred%20Martin%22%2C%22lastName%22%3A%22Ralph%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Vijay%22%2C%22lastName%22%3A%22Tallapragada%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christopher%22%2C%22lastName%22%3A%22Davis%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Daniel%22%2C%22lastName%22%3A%22Steinhoff%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xingren%22%2C%22lastName%22%3A%22Wu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Anna%22%2C%22lastName%22%3A%22Wilson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Caroline%22%2C%22lastName%22%3A%22Papadopoulos%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Patrick%22%2C%22lastName%22%3A%22Mulrooney%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20During%20a%206-day%20intensive%20observing%20period%20in%20January%202021%2C%20Atmospheric%20River%20Reconnaissance%20%28AR%20Recon%29%20aircraft%20sampled%20a%20series%20of%20atmospheric%20rivers%20%28ARs%29%20over%20the%20northeastern%20Pacific%20that%20caused%20heavy%20precipitation%20over%20coastal%20California%20and%20the%20Sierra%20Nevada.%20Using%20these%20observations%2C%20data%20denial%20experiments%20were%20conducted%20with%20a%20regional%20modeling%20and%20data%20assimilation%20system%20to%20explore%20the%20impacts%20of%20research%20flight%20frequency%20and%20spatial%20resolution%20of%20dropsondes%20on%20model%20analyses%20and%20forecasts.%20Results%20indicate%20that%20dropsondes%20significantly%20improve%20the%20representation%20of%20ARs%20in%20the%20model%20analyses%20and%20positively%20impact%20the%20forecast%20skill%20of%20ARs%20and%20quantitative%20precipitation%20forecasts%20%28QPF%29%2C%20particularly%20for%20lead%20times%20%3E%201%20day.%20Both%20reduced%20mission%20frequency%20and%20reduced%20dropsonde%20horizontal%20resolution%20degrade%20forecast%20skill.%20On%20the%20other%20hand%2C%20experiments%20that%20assimilated%20only%20G-IV%20data%20and%20experiments%20that%20assimilated%20both%20G-IV%20and%20C-130%20data%20show%20better%20forecast%20skill%20than%20experiments%20that%20only%20assimilated%20C-130%20data%2C%20suggesting%20that%20the%20additional%20information%20provided%20by%20G-IV%20data%20is%20necessary%20for%20improving%20forecast%20skill.%20Although%20this%20is%20a%20case%20study%2C%20the%206-day%20period%20studied%20encompassed%20multiple%20AR%20events%20that%20are%20representative%20of%20typical%20AR%20behavior.%20Therefore%2C%20the%20results%20indicate%20that%20future%20operational%20AR%20Recon%20missions%20incorporate%20daily%20mission%20or%20back-to-back%20flights%2C%20maintain%20current%20dropsonde%20spacing%2C%20support%20high-resolution%20data%20transfer%20capacity%20on%20the%20C-130s%2C%20and%20utilize%20G-IV%20aircraft%20in%20addition%20to%20C-130s.%22%2C%22date%22%3A%2203%5C%2F2024%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1175%5C%2FMWR-D-23-0111.1%22%2C%22ISSN%22%3A%220027-0644%2C%201520-0493%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fjournals.ametsoc.org%5C%2Fview%5C%2Fjournals%5C%2Fmwre%5C%2F152%5C%2F3%5C%2FMWR-D-23-0111.1.xml%22%2C%22collections%22%3A%5B%22H3FG68WV%22%2C%223BVIFSK4%22%2C%22GS9TJSRH%22%2C%22ZMF9SIZP%22%5D%2C%22dateModified%22%3A%222024-03-22T16%3A01%3A24Z%22%7D%7D%2C%7B%22key%22%3A%22CMA9DNY2%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Wille%20et%20al.%22%2C%22parsedDate%22%3A%222024%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EWille%2C%20J.%20D.%2C%20Alexander%2C%20S.%20P.%2C%20Amory%2C%20C.%2C%20Baiman%2C%20R.%2C%20Barth%26%23xE9%3Blemy%2C%20L.%2C%20Bergstrom%2C%20D.%20M.%2C%20Berne%2C%20A.%2C%20Binder%2C%20H.%2C%20Blanchet%2C%20J.%2C%20Bozkurt%2C%20D.%2C%20Bracegirdle%2C%20T.%20J.%2C%20Casado%2C%20M.%2C%20Choi%2C%20T.%2C%20Clem%2C%20K.%20R.%2C%20Codron%2C%20F.%2C%20Datta%2C%20R.%2C%20Di%20Battista%2C%20S.%2C%20Favier%2C%20V.%2C%20Francis%2C%20D.%2C%20%26%23x2026%3B%20Zou%2C%20X.%20%282024%29.%20The%20Extraordinary%20March%202022%20East%20Antarctica%20%26%23x201C%3BHeat%26%23x201D%3B%20Wave.%20Part%20I%3A%20Observations%20and%20Meteorological%20Drivers.%20%3Ci%3EJournal%20of%20Climate%3C%5C%2Fi%3E%2C%20%3Ci%3E37%3C%5C%2Fi%3E%283%29%2C%20757%26%23x2013%3B778.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1175%5C%2FJCLI-D-23-0175.1%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1175%5C%2FJCLI-D-23-0175.1%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22The%20Extraordinary%20March%202022%20East%20Antarctica%20%5Cu201cHeat%5Cu201d%20Wave.%20Part%20I%3A%20Observations%20and%20Meteorological%20Drivers%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jonathan%20D.%22%2C%22lastName%22%3A%22Wille%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Simon%20P.%22%2C%22lastName%22%3A%22Alexander%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Charles%22%2C%22lastName%22%3A%22Amory%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Rebecca%22%2C%22lastName%22%3A%22Baiman%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L%5Cu00e9onard%22%2C%22lastName%22%3A%22Barth%5Cu00e9lemy%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Dana%20M.%22%2C%22lastName%22%3A%22Bergstrom%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alexis%22%2C%22lastName%22%3A%22Berne%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Hanin%22%2C%22lastName%22%3A%22Binder%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Juliette%22%2C%22lastName%22%3A%22Blanchet%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Deniz%22%2C%22lastName%22%3A%22Bozkurt%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Thomas%20J.%22%2C%22lastName%22%3A%22Bracegirdle%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mathieu%22%2C%22lastName%22%3A%22Casado%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Taejin%22%2C%22lastName%22%3A%22Choi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Kyle%20R.%22%2C%22lastName%22%3A%22Clem%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Francis%22%2C%22lastName%22%3A%22Codron%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Rajashree%22%2C%22lastName%22%3A%22Datta%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Stefano%22%2C%22lastName%22%3A%22Di%20Battista%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Vincent%22%2C%22lastName%22%3A%22Favier%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Diana%22%2C%22lastName%22%3A%22Francis%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alexander%20D.%22%2C%22lastName%22%3A%22Fraser%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Elise%22%2C%22lastName%22%3A%22Fourr%5Cu00e9%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ren%5Cu00e9%20D.%22%2C%22lastName%22%3A%22Garreaud%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christophe%22%2C%22lastName%22%3A%22Genthon%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Irina%20V.%22%2C%22lastName%22%3A%22Gorodetskaya%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sergi%22%2C%22lastName%22%3A%22Gonz%5Cu00e1lez-Herrero%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Victoria%20J.%22%2C%22lastName%22%3A%22Heinrich%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Guillaume%22%2C%22lastName%22%3A%22Hubert%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Hanna%22%2C%22lastName%22%3A%22Joos%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Seong-Joong%22%2C%22lastName%22%3A%22Kim%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22John%20C.%22%2C%22lastName%22%3A%22King%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christoph%22%2C%22lastName%22%3A%22Kittel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Amaelle%22%2C%22lastName%22%3A%22Landais%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthew%22%2C%22lastName%22%3A%22Lazzara%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Gregory%20H.%22%2C%22lastName%22%3A%22Leonard%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jan%20L.%22%2C%22lastName%22%3A%22Lieser%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Michelle%22%2C%22lastName%22%3A%22Maclennan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22David%22%2C%22lastName%22%3A%22Mikolajczyk%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Peter%22%2C%22lastName%22%3A%22Neff%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22In%5Cu00e8s%22%2C%22lastName%22%3A%22Ollivier%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ghislain%22%2C%22lastName%22%3A%22Picard%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Benjamin%22%2C%22lastName%22%3A%22Pohl%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%20Martin%22%2C%22lastName%22%3A%22Ralph%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Penny%22%2C%22lastName%22%3A%22Rowe%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Elisabeth%22%2C%22lastName%22%3A%22Schlosser%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christine%20A.%22%2C%22lastName%22%3A%22Shields%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Inga%20J.%22%2C%22lastName%22%3A%22Smith%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Michael%22%2C%22lastName%22%3A%22Sprenger%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Luke%22%2C%22lastName%22%3A%22Trusel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Danielle%22%2C%22lastName%22%3A%22Udy%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Tessa%22%2C%22lastName%22%3A%22Vance%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22%5Cu00c9tienne%22%2C%22lastName%22%3A%22Vignon%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Catherine%22%2C%22lastName%22%3A%22Walker%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nander%22%2C%22lastName%22%3A%22Wever%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xun%22%2C%22lastName%22%3A%22Zou%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Between%2015%20and%2019%20March%202022%2C%20East%20Antarctica%20experienced%20an%20exceptional%20heat%20wave%20with%20widespread%2030%5Cu00b0%5Cu201340%5Cu00b0C%20temperature%20anomalies%20across%20the%20ice%20sheet.%20This%20record-shattering%20event%20saw%20numerous%20monthly%20temperature%20records%20being%20broken%20including%20a%20new%20all-time%20temperature%20record%20of%20%5Cu22129.4%5Cu00b0C%20on%2018%20March%20at%20Concordia%20Station%20despite%20March%20typically%20being%20a%20transition%20month%20to%20the%20Antarctic%20coreless%20winter.%20The%20driver%20for%20these%20temperature%20extremes%20was%20an%20intense%20atmospheric%20river%20advecting%20subtropical%5C%2Fmidlatitude%20heat%20and%20moisture%20deep%20into%20the%20Antarctic%20interior.%20The%20scope%20of%20the%20temperature%20records%20spurred%20a%20large%2C%20diverse%20collaborative%20effort%20to%20study%20the%20heat%20wave%5Cu2019s%20meteorological%20drivers%2C%20impacts%2C%20and%20historical%20climate%20context.%20Here%20we%20focus%20on%20describing%20those%20temperature%20records%20along%20with%20the%20intricate%20meteorological%20drivers%20that%20led%20to%20the%20most%20intense%20atmospheric%20river%20observed%20over%20East%20Antarctica.%20These%20efforts%20describe%20the%20Rossby%20wave%20activity%20forced%20from%20intense%20tropical%20convection%20over%20the%20Indian%20Ocean.%20This%20led%20to%20an%20atmospheric%20river%20and%20warm%20conveyor%20belt%20intensification%20near%20the%20coastline%2C%20which%20reinforced%20atmospheric%20blocking%20deep%20into%20East%20Antarctica.%20The%20resulting%20moisture%20flux%20and%20upper-level%20warm-air%20advection%20eroded%20the%20typical%20surface%20temperature%20inversions%20over%20the%20ice%20sheet.%20At%20the%20peak%20of%20the%20heat%20wave%2C%20an%20area%20of%203.3%20million%20km%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%202%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20in%20East%20Antarctica%20exceeded%20previous%20March%20monthly%20temperature%20records.%20Despite%20a%20temperature%20anomaly%20return%20time%20of%20about%20100%20years%2C%20a%20closer%20recurrence%20of%20such%20an%20event%20is%20possible%20under%20future%20climate%20projections.%20In%20Part%20II%20we%20describe%20the%20various%20impacts%20this%20extreme%20event%20had%20on%20the%20East%20Antarctic%20cryosphere.%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Significance%20Statement%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20In%20March%202022%2C%20a%20heat%20wave%20and%20atmospheric%20river%20caused%20some%20of%20the%20highest%20temperature%20anomalies%20ever%20observed%20globally%20and%20captured%20the%20attention%20of%20the%20Antarctic%20science%20community.%20Using%20our%20diverse%20collective%20expertise%2C%20we%20explored%20the%20causes%20of%20the%20event%20and%20have%20placed%20it%20within%20a%20historical%20climate%20context.%20One%20key%20takeaway%20is%20that%20Antarctic%20climate%20extremes%20are%20highly%20sensitive%20to%20perturbations%20in%20the%20midlatitudes%20and%20subtropics.%20This%20heat%20wave%20redefined%20our%20expectations%20of%20the%20Antarctic%20climate.%20Despite%20the%20rare%20chance%20of%20occurrence%20based%20on%20past%20climate%2C%20a%20future%20temperature%20extreme%20event%20of%20similar%20magnitude%20is%20possible%2C%20especially%20given%20anthropogenic%20climate%20change.%22%2C%22date%22%3A%2202%5C%2F2024%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1175%5C%2FJCLI-D-23-0175.1%22%2C%22ISSN%22%3A%220894-8755%2C%201520-0442%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fjournals.ametsoc.org%5C%2Fview%5C%2Fjournals%5C%2Fclim%5C%2F37%5C%2F3%5C%2FJCLI-D-23-0175.1.xml%22%2C%22collections%22%3A%5B%223BVIFSK4%22%5D%2C%22dateModified%22%3A%222024-04-29T22%3A39%3A35Z%22%7D%7D%2C%7B%22key%22%3A%22T6YXBYZ7%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Wille%20et%20al.%22%2C%22parsedDate%22%3A%222024%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EWille%2C%20J.%20D.%2C%20Alexander%2C%20S.%20P.%2C%20Amory%2C%20C.%2C%20Baiman%2C%20R.%2C%20Barth%26%23xE9%3Blemy%2C%20L.%2C%20Bergstrom%2C%20D.%20M.%2C%20Berne%2C%20A.%2C%20Binder%2C%20H.%2C%20Blanchet%2C%20J.%2C%20Bozkurt%2C%20D.%2C%20Bracegirdle%2C%20T.%20J.%2C%20Casado%2C%20M.%2C%20Choi%2C%20T.%2C%20Clem%2C%20K.%20R.%2C%20Codron%2C%20F.%2C%20Datta%2C%20R.%2C%20Battista%2C%20S.%20D.%2C%20Favier%2C%20V.%2C%20Francis%2C%20D.%2C%20%26%23x2026%3B%20Zou%2C%20X.%20%282024%29.%20The%20Extraordinary%20March%202022%20East%20Antarctica%20%26%23x201C%3BHeat%26%23x201D%3B%20Wave.%20Part%20II%3A%20Impacts%20on%20the%20Antarctic%20Ice%20Sheet.%20%3Ci%3EJournal%20of%20Climate%3C%5C%2Fi%3E%2C%20%3Ci%3E37%3C%5C%2Fi%3E%283%29%2C%20779%26%23x2013%3B799.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1175%5C%2FJCLI-D-23-0176.1%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1175%5C%2FJCLI-D-23-0176.1%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22The%20Extraordinary%20March%202022%20East%20Antarctica%20%5Cu201cHeat%5Cu201d%20Wave.%20Part%20II%3A%20Impacts%20on%20the%20Antarctic%20Ice%20Sheet%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jonathan%20D.%22%2C%22lastName%22%3A%22Wille%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Simon%20P.%22%2C%22lastName%22%3A%22Alexander%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Charles%22%2C%22lastName%22%3A%22Amory%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Rebecca%22%2C%22lastName%22%3A%22Baiman%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L%5Cu00e9onard%22%2C%22lastName%22%3A%22Barth%5Cu00e9lemy%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Dana%20M.%22%2C%22lastName%22%3A%22Bergstrom%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alexis%22%2C%22lastName%22%3A%22Berne%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Hanin%22%2C%22lastName%22%3A%22Binder%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Juliette%22%2C%22lastName%22%3A%22Blanchet%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Deniz%22%2C%22lastName%22%3A%22Bozkurt%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Thomas%20J.%22%2C%22lastName%22%3A%22Bracegirdle%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mathieu%22%2C%22lastName%22%3A%22Casado%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Taejin%22%2C%22lastName%22%3A%22Choi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Kyle%20R.%22%2C%22lastName%22%3A%22Clem%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Francis%22%2C%22lastName%22%3A%22Codron%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Rajashree%22%2C%22lastName%22%3A%22Datta%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Stefano%20Di%22%2C%22lastName%22%3A%22Battista%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Vincent%22%2C%22lastName%22%3A%22Favier%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Diana%22%2C%22lastName%22%3A%22Francis%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alexander%20D.%22%2C%22lastName%22%3A%22Fraser%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Elise%22%2C%22lastName%22%3A%22Fourr%5Cu00e9%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ren%5Cu00e9%20D.%22%2C%22lastName%22%3A%22Garreaud%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christophe%22%2C%22lastName%22%3A%22Genthon%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Irina%20V.%22%2C%22lastName%22%3A%22Gorodetskaya%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sergi%22%2C%22lastName%22%3A%22Gonz%5Cu00e1lez-Herrero%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Victoria%20J.%22%2C%22lastName%22%3A%22Heinrich%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Guillaume%22%2C%22lastName%22%3A%22Hubert%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Hanna%22%2C%22lastName%22%3A%22Joos%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Seong-Joong%22%2C%22lastName%22%3A%22Kim%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22John%20C.%22%2C%22lastName%22%3A%22King%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christoph%22%2C%22lastName%22%3A%22Kittel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Amaelle%22%2C%22lastName%22%3A%22Landais%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthew%22%2C%22lastName%22%3A%22Lazzara%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Gregory%20H.%22%2C%22lastName%22%3A%22Leonard%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jan%20L.%22%2C%22lastName%22%3A%22Lieser%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Michelle%22%2C%22lastName%22%3A%22Maclennan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22David%22%2C%22lastName%22%3A%22Mikolajczyk%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Peter%22%2C%22lastName%22%3A%22Neff%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22In%5Cu00e8s%22%2C%22lastName%22%3A%22Ollivier%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ghislain%22%2C%22lastName%22%3A%22Picard%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Benjamin%22%2C%22lastName%22%3A%22Pohl%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%20Martin%22%2C%22lastName%22%3A%22Ralph%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Penny%22%2C%22lastName%22%3A%22Rowe%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Elisabeth%22%2C%22lastName%22%3A%22Schlosser%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christine%20A.%22%2C%22lastName%22%3A%22Shields%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Inga%20J.%22%2C%22lastName%22%3A%22Smith%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Michael%22%2C%22lastName%22%3A%22Sprenger%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Luke%22%2C%22lastName%22%3A%22Trusel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Danielle%22%2C%22lastName%22%3A%22Udy%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Tessa%22%2C%22lastName%22%3A%22Vance%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22%5Cu00c9tienne%22%2C%22lastName%22%3A%22Vignon%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Catherine%22%2C%22lastName%22%3A%22Walker%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nander%22%2C%22lastName%22%3A%22Wever%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xun%22%2C%22lastName%22%3A%22Zou%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Between%2015%20and%2019%20March%202022%2C%20East%20Antarctica%20experienced%20an%20exceptional%20heat%20wave%20with%20widespread%2030%5Cu00b0%5Cu201340%5Cu00b0C%20temperature%20anomalies%20across%20the%20ice%20sheet.%20In%20Part%20I%2C%20we%20assessed%20the%20meteorological%20drivers%20that%20generated%20an%20intense%20atmospheric%20river%20%28AR%29%20that%20caused%20these%20record-shattering%20temperature%20anomalies.%20Here%2C%20we%20continue%20our%20large%20collaborative%20study%20by%20analyzing%20the%20widespread%20and%20diverse%20impacts%20driven%20by%20the%20AR%20landfall.%20These%20impacts%20included%20widespread%20rain%20and%20surface%20melt%20that%20was%20recorded%20along%20coastal%20areas%2C%20but%20this%20was%20outweighed%20by%20widespread%20high%20snowfall%20accumulations%20resulting%20in%20a%20largely%20positive%20surface%20mass%20balance%20contribution%20to%20the%20East%20Antarctic%20region.%20An%20analysis%20of%20the%20surface%20energy%20budget%20indicated%20that%20widespread%20downward%20longwave%20radiation%20anomalies%20caused%20by%20large%20cloud-liquid%20water%20contents%20along%20with%20some%20scattered%20solar%20radiation%20produced%20intense%20surface%20warming.%20Isotope%20measurements%20of%20the%20moisture%20were%20highly%20elevated%2C%20likely%20imprinting%20a%20strong%20signal%20for%20past%20climate%20reconstructions.%20The%20AR%20event%20attenuated%20cosmic%20ray%20measurements%20at%20Concordia%2C%20something%20previously%20never%20observed.%20Last%2C%20an%20extratropical%20cyclone%20west%20of%20the%20AR%20landfall%20likely%20triggered%20the%20final%20collapse%20of%20the%20critically%20unstable%20Conger%20Ice%20Shelf%20while%20further%20reducing%20an%20already%20record%20low%20sea%20ice%20extent.%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Significance%20Statement%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Using%20our%20diverse%20collective%20expertise%2C%20we%20explored%20the%20impacts%20from%20the%20March%202022%20heat%20wave%20and%20atmospheric%20river%20across%20East%20Antarctica.%20One%20key%20takeaway%20is%20that%20the%20Antarctic%20cryosphere%20is%20highly%20sensitive%20to%20meteorological%20extremes%20originating%20from%20the%20midlatitudes%20and%20subtropics.%20Despite%20the%20large%20positive%20temperature%20anomalies%20driven%20from%20strong%20downward%20longwave%20radiation%2C%20this%20event%20led%20to%20huge%20amounts%20of%20snowfall%20across%20the%20Antarctic%20interior%20desert.%20The%20isotopes%20in%20this%20snow%20of%20warm%20airmass%20origin%20will%20likely%20be%20detectable%20in%20future%20ice%20cores%20and%20potentially%20distort%20past%20climate%20reconstructions.%20Even%20measurements%20of%20space%20activity%20were%20affected.%20Also%2C%20the%20swells%20generated%20from%20this%20storm%20helped%20to%20trigger%20the%20final%20collapse%20of%20an%20already%20critically%20unstable%20Conger%20Ice%20Shelf%20while%20further%20degrading%20sea%20ice%20coverage.%22%2C%22date%22%3A%2202%5C%2F2024%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1175%5C%2FJCLI-D-23-0176.1%22%2C%22ISSN%22%3A%220894-8755%2C%201520-0442%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fjournals.ametsoc.org%5C%2Fview%5C%2Fjournals%5C%2Fclim%5C%2F37%5C%2F3%5C%2FJCLI-D-23-0176.1.xml%22%2C%22collections%22%3A%5B%223BVIFSK4%22%5D%2C%22dateModified%22%3A%222024-04-12T21%3A15%3A40Z%22%7D%7D%2C%7B%22key%22%3A%22Q8Y6Q4AM%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22DeFlorio%20et%20al.%22%2C%22parsedDate%22%3A%222024%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EDeFlorio%2C%20M.%20J.%2C%20Sengupta%2C%20A.%2C%20Castellano%2C%20C.%20M.%2C%20Wang%2C%20J.%2C%20Zhang%2C%20Z.%2C%20Gershunov%2C%20A.%2C%20Guirguis%2C%20K.%2C%20Luna%20Ni%26%23xF1%3Bo%2C%20R.%2C%20Clemesha%2C%20R.%20E.%20S.%2C%20Pan%2C%20M.%2C%20Xiao%2C%20M.%2C%20Kawzenuk%2C%20B.%2C%20Gibson%2C%20P.%20B.%2C%20Scheftic%2C%20W.%2C%20Broxton%2C%20P.%20D.%2C%20Switanek%2C%20M.%20B.%2C%20Yuan%2C%20J.%2C%20Dettinger%2C%20M.%20D.%2C%20Hecht%2C%20C.%20W.%2C%20%26%23x2026%3B%20Anderson%2C%20M.%20L.%20%282024%29.%20From%20California%26%23x2019%3Bs%20Extreme%20Drought%20to%20Major%20Flooding%3A%20Evaluating%20and%20Synthesizing%20Experimental%20Seasonal%20and%20Subseasonal%20Forecasts%20of%20Landfalling%20Atmospheric%20Rivers%20and%20Extreme%20Precipitation%20during%20Winter%202022%5C%2F23.%20%3Ci%3EBulletin%20of%20the%20American%20Meteorological%20Society%3C%5C%2Fi%3E%2C%20%3Ci%3E105%3C%5C%2Fi%3E%281%29%2C%20E84%26%23x2013%3BE104.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1175%5C%2FBAMS-D-22-0208.1%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1175%5C%2FBAMS-D-22-0208.1%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22From%20California%5Cu2019s%20Extreme%20Drought%20to%20Major%20Flooding%3A%20Evaluating%20and%20Synthesizing%20Experimental%20Seasonal%20and%20Subseasonal%20Forecasts%20of%20Landfalling%20Atmospheric%20Rivers%20and%20Extreme%20Precipitation%20during%20Winter%202022%5C%2F23%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Michael%20J.%22%2C%22lastName%22%3A%22DeFlorio%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Agniv%22%2C%22lastName%22%3A%22Sengupta%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christopher%20M.%22%2C%22lastName%22%3A%22Castellano%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jiabao%22%2C%22lastName%22%3A%22Wang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Zhenhai%22%2C%22lastName%22%3A%22Zhang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alexander%22%2C%22lastName%22%3A%22Gershunov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Kristen%22%2C%22lastName%22%3A%22Guirguis%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Rosa%22%2C%22lastName%22%3A%22Luna%20Ni%5Cu00f1o%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Rachel%20E.%20S.%22%2C%22lastName%22%3A%22Clemesha%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ming%22%2C%22lastName%22%3A%22Pan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mu%22%2C%22lastName%22%3A%22Xiao%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Brian%22%2C%22lastName%22%3A%22Kawzenuk%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Peter%20B.%22%2C%22lastName%22%3A%22Gibson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22William%22%2C%22lastName%22%3A%22Scheftic%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Patrick%20D.%22%2C%22lastName%22%3A%22Broxton%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthew%20B.%22%2C%22lastName%22%3A%22Switanek%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jing%22%2C%22lastName%22%3A%22Yuan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Michael%20D.%22%2C%22lastName%22%3A%22Dettinger%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Chad%20W.%22%2C%22lastName%22%3A%22Hecht%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Daniel%20R.%22%2C%22lastName%22%3A%22Cayan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bruce%20D.%22%2C%22lastName%22%3A%22Cornuelle%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Arthur%20J.%22%2C%22lastName%22%3A%22Miller%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Julie%22%2C%22lastName%22%3A%22Kalansky%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Luca%22%2C%22lastName%22%3A%22Delle%20Monache%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%20Martin%22%2C%22lastName%22%3A%22Ralph%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Duane%20E.%22%2C%22lastName%22%3A%22Waliser%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrew%20W.%22%2C%22lastName%22%3A%22Robertson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xubin%22%2C%22lastName%22%3A%22Zeng%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22David%20G.%22%2C%22lastName%22%3A%22DeWitt%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jeanine%22%2C%22lastName%22%3A%22Jones%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Michael%20L.%22%2C%22lastName%22%3A%22Anderson%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20California%20experienced%20a%20historic%20run%20of%20nine%20consecutive%20landfalling%20atmospheric%20rivers%20%28ARs%29%20in%20three%20weeks%5Cu2019%20time%20during%20winter%202022%5C%2F23.%20Following%20three%20years%20of%20drought%20from%202020%20to%202022%2C%20intense%20landfalling%20ARs%20across%20California%20in%20December%202022%5Cu2013January%202023%20were%20responsible%20for%20bringing%20reservoirs%20back%20to%20historical%20averages%20and%20producing%20damaging%20floods%20and%20debris%20flows.%20In%20recent%20years%2C%20the%20Center%20for%20Western%20Weather%20and%20Water%20Extremes%20and%20collaborating%20institutions%20have%20developed%20and%20routinely%20provided%20to%20end%20users%20peer-reviewed%20experimental%20seasonal%20%281%5Cu20136%20month%20lead%20time%29%20and%20subseasonal%20%282%5Cu20136%5Cu2009week%20lead%20time%29%20prediction%20tools%20for%20western%20U.S.%20ARs%2C%20circulation%20regimes%2C%20and%20precipitation.%20Here%2C%20we%20evaluate%20the%20performance%20of%20experimental%20seasonal%20precipitation%20forecasts%20for%20winter%202022%5C%2F23%2C%20along%20with%20experimental%20subseasonal%20AR%20activity%20and%20circulation%20forecasts%20during%20the%20December%202022%20regime%20shift%20from%20dry%20conditions%20to%20persistent%20troughing%20and%20record%20AR-driven%20wetness%20over%20the%20western%20United%20States.%20Experimental%20seasonal%20precipitation%20forecasts%20were%20too%20dry%20across%20Southern%20California%20%28likely%20due%20to%20their%20overreliance%20on%20La%20Ni%5Cu00f1a%29%2C%20and%20the%20observed%20above-normal%20precipitation%20across%20Northern%20and%20Central%20California%20was%20underpredicted.%20However%2C%20experimental%20subseasonal%20forecasts%20skillfully%20captured%20the%20regime%20shift%20from%20dry%20to%20wet%20conditions%20in%20late%20December%202022%20at%202%5Cu20133%5Cu2009week%20lead%20time.%20During%20this%20time%2C%20an%20active%20MJO%20shift%20from%20phases%204%20and%205%20to%206%20and%207%20occurred%2C%20which%20historically%20tilts%20the%20odds%20toward%20increased%20AR%20activity%20over%20California.%20New%20experimental%20seasonal%20and%20subseasonal%20synthesis%20forecast%20products%2C%20designed%20to%20aggregate%20information%20across%20institutions%20and%20methods%2C%20are%20introduced%20in%20the%20context%20of%20this%20historic%20winter%20to%20provide%20situational%20awareness%20guidance%20to%20western%20U.S.%20water%20managers.%22%2C%22date%22%3A%2201%5C%2F2024%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1175%5C%2FBAMS-D-22-0208.1%22%2C%22ISSN%22%3A%220003-0007%2C%201520-0477%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fjournals.ametsoc.org%5C%2Fview%5C%2Fjournals%5C%2Fbams%5C%2F105%5C%2F1%5C%2FBAMS-D-22-0208.1.xml%22%2C%22collections%22%3A%5B%22TFFGCZNI%22%2C%222CJDBIH8%22%2C%22R4DENPGW%22%2C%223BVIFSK4%22%2C%227J6PFJNF%22%2C%22GS9TJSRH%22%2C%225VS4ETHR%22%2C%228U6EVDVF%22%2C%22FCUZWX58%22%2C%22SS6XDERI%22%5D%2C%22dateModified%22%3A%222024-04-12T20%3A11%3A17Z%22%7D%7D%2C%7B%22key%22%3A%224LKFTX69%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Guirguis%20et%20al.%22%2C%22parsedDate%22%3A%222023-12-16%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EGuirguis%2C%20K.%2C%20Gershunov%2C%20A.%2C%20Hatchett%2C%20B.%20J.%2C%20DeFlorio%2C%20M.%20J.%2C%20Subramanian%2C%20A.%20C.%2C%20Clemesha%2C%20R.%2C%20Delle%20Monache%2C%20L.%2C%20%26amp%3B%20%3Cstrong%3ERalph%3C%5C%2Fstrong%3E%2C%20F.%20M.%20%282023%29.%20Subseasonal%20Prediction%20of%20Impactful%20California%20Winter%20Weather%20in%20a%20Hybrid%20Dynamical%26%23x2010%3BStatistical%20Framework.%20%3Ci%3EGeophysical%20Research%20Letters%3C%5C%2Fi%3E%2C%20%3Ci%3E50%3C%5C%2Fi%3E%2823%29%2C%20e2023GL105360.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2023GL105360%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2023GL105360%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Subseasonal%20Prediction%20of%20Impactful%20California%20Winter%20Weather%20in%20a%20Hybrid%20Dynamical%5Cu2010Statistical%20Framework%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Kristen%22%2C%22lastName%22%3A%22Guirguis%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alexander%22%2C%22lastName%22%3A%22Gershunov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Benjamin%20J.%22%2C%22lastName%22%3A%22Hatchett%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Michael%20J.%22%2C%22lastName%22%3A%22DeFlorio%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Aneesh%20C.%22%2C%22lastName%22%3A%22Subramanian%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Rachel%22%2C%22lastName%22%3A%22Clemesha%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Luca%22%2C%22lastName%22%3A%22Delle%20Monache%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%20Martin%22%2C%22lastName%22%3A%22Ralph%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Atmospheric%20rivers%20%28ARs%29%20and%20Santa%20Ana%20winds%20%28SAWs%29%20are%20impactful%20weather%20events%20for%20California%20communities.%20Emergency%20planning%20efforts%20and%20resource%20management%20would%20benefit%20from%20extending%20lead%20times%20of%20skillful%20prediction%20for%20these%20and%20other%20types%20of%20extreme%20weather%20patterns.%20Here%20we%20describe%20a%20methodology%20for%20subseasonal%20prediction%20of%20impactful%20winter%20weather%20in%20California%2C%20including%20ARs%2C%20SAWs%20and%20heat%20extremes.%20The%20hybrid%20approach%20combines%20dynamical%20model%20and%20historical%20information%20to%20forecast%20probabilities%20of%20impactful%20weather%20outcomes%20at%20weeks%201%5Cu20134%20lead.%20This%20methodology%20uses%20dynamical%20model%20information%20considered%20most%20reliable%2C%20that%20is%2C%20planetary%5C%2Fsynoptic%5Cu2010scale%20atmospheric%20circulation%2C%20filters%20for%20dynamical%20model%20error%5C%2Funcertainty%20at%20longer%20lead%20times%20and%20increases%20the%20sample%20of%20likely%20outcomes%20by%20utilizing%20the%20full%20historical%20record%20instead%20of%20a%20more%20limited%20suite%20of%20dynamical%20forecast%20model%20ensemble%20members.%20We%20demonstrate%20skill%20above%20climatology%20at%20subseasonal%20timescales%2C%20highlighting%20potential%20for%20use%20in%20water%2C%20health%2C%20land%2C%20and%20fire%20management%20decision%20support.%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Plain%20Language%20Summary%5Cn%20%20%20%20%20%20%20%20%20%20%20%20California%20winter%20weather%20can%20alternate%20between%20very%20wet%20conditions%20from%20atmospheric%20rivers%20making%20landfall%20along%20the%20Pacific%20coast%20to%20hot%2C%20dry%2C%20and%20windy%20conditions%20brought%20by%20Santa%20Ana%20winds%20blowing%20in%20from%20the%20Southwest%20interior.%20Atmospheric%20rivers%20are%20important%20for%20water%20resources%20while%20also%20causing%20flooding%2C%20whereas%20Santa%20Ana%20winds%20are%20often%20associated%20with%20wildfire%2C%20especially%20following%20prolonged%20dry%20periods.%20Preparing%20for%20these%20types%20of%20weather%20events%20is%20important%20for%20managing%20resources%20and%20protecting%20life%20and%20property%2C%20yet%20reliable%20forecasts%20beyond%20about%207%5Cu201310%5Cu00a0days%20remain%20a%20challenge.%20We%20have%20developed%20a%20new%20prediction%20system%20that%20combines%20information%20about%20approaching%20atmospheric%20weather%20patterns%20from%20weather%20forecast%20models%20along%20with%20historical%20information%20relating%20those%20patterns%20to%20impacts%20over%20California%20to%20predict%20the%20likelihood%20of%20impactful%20weather%20at%201%5Cu20134%5Cu00a0weeks%20lead%20time.%20By%20extending%20the%20window%20of%20opportunity%20to%20take%20management%20action%2C%20this%20new%20approach%20should%20aid%20in%20resource%20and%20emergency%20planning%20in%20water%2C%20land%2C%20and%20fire%20sectors%20as%20well%20as%20protecting%20residents%20through%20improved%20warning%20systems.%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Key%20Points%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20A%20hybrid%20dynamical%5Cu2010statistical%20model%20is%20described%20for%201%5Cu20134%5Cu2010week%20forecasts%20of%20impactful%20California%20winter%20weather%20using%20circulation%20regimes%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20This%20hybrid%20framework%20reduces%20the%20number%20of%20forecasts%20produced%2C%20but%20the%20ones%20issued%20can%20be%20interpreted%20with%20higher%20confidence%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20This%20new%20methodology%20provides%20skillful%20subseasonal%20forecasts%20with%20potential%20to%20improve%20early%20warnings%20for%20impactful%20weather%20events%22%2C%22date%22%3A%222023-12-16%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1029%5C%2F2023GL105360%22%2C%22ISSN%22%3A%220094-8276%2C%201944-8007%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fagupubs.onlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1029%5C%2F2023GL105360%22%2C%22collections%22%3A%5B%223BVIFSK4%22%2C%227J6PFJNF%22%2C%22GS9TJSRH%22%2C%228U6EVDVF%22%2C%22FCUZWX58%22%2C%22SS6XDERI%22%5D%2C%22dateModified%22%3A%222023-12-22T21%3A58%3A57Z%22%7D%7D%2C%7B%22key%22%3A%22YC2UZF8H%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Gorodetskaya%20et%20al.%22%2C%22parsedDate%22%3A%222023-12-04%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EGorodetskaya%2C%20I.%20V.%2C%20Dur%26%23xE1%3Bn-Alarc%26%23xF3%3Bn%2C%20C.%2C%20Gonz%26%23xE1%3Blez-Herrero%2C%20S.%2C%20Clem%2C%20K.%20R.%2C%20Zou%2C%20X.%2C%20Rowe%2C%20P.%2C%20Rodriguez%20Imazio%2C%20P.%2C%20Campos%2C%20D.%2C%20Leroy-Dos%20Santos%2C%20C.%2C%20Dutrievoz%2C%20N.%2C%20Wille%2C%20J.%20D.%2C%20Chyhareva%2C%20A.%2C%20Favier%2C%20V.%2C%20Blanchet%2C%20J.%2C%20Pohl%2C%20B.%2C%20Cordero%2C%20R.%20R.%2C%20Park%2C%20S.-J.%2C%20Colwell%2C%20S.%2C%20Lazzara%2C%20M.%20A.%2C%20%26%23x2026%3B%20Picard%2C%20G.%20%282023%29.%20Record-high%20Antarctic%20Peninsula%20temperatures%20and%20surface%20melt%20in%20February%202022%3A%20a%20compound%20event%20with%20an%20intense%20atmospheric%20river.%20%3Ci%3ENpj%20Climate%20and%20Atmospheric%20Science%3C%5C%2Fi%3E%2C%20%3Ci%3E6%3C%5C%2Fi%3E%281%29%2C%20202.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41612-023-00529-6%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41612-023-00529-6%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Record-high%20Antarctic%20Peninsula%20temperatures%20and%20surface%20melt%20in%20February%202022%3A%20a%20compound%20event%20with%20an%20intense%20atmospheric%20river%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Irina%20V.%22%2C%22lastName%22%3A%22Gorodetskaya%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Claudio%22%2C%22lastName%22%3A%22Dur%5Cu00e1n-Alarc%5Cu00f3n%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sergi%22%2C%22lastName%22%3A%22Gonz%5Cu00e1lez-Herrero%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Kyle%20R.%22%2C%22lastName%22%3A%22Clem%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xun%22%2C%22lastName%22%3A%22Zou%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Penny%22%2C%22lastName%22%3A%22Rowe%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Paola%22%2C%22lastName%22%3A%22Rodriguez%20Imazio%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Diego%22%2C%22lastName%22%3A%22Campos%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christophe%22%2C%22lastName%22%3A%22Leroy-Dos%20Santos%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Niels%22%2C%22lastName%22%3A%22Dutrievoz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jonathan%20D.%22%2C%22lastName%22%3A%22Wille%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Anastasiia%22%2C%22lastName%22%3A%22Chyhareva%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Vincent%22%2C%22lastName%22%3A%22Favier%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Juliette%22%2C%22lastName%22%3A%22Blanchet%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Benjamin%22%2C%22lastName%22%3A%22Pohl%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Raul%20R.%22%2C%22lastName%22%3A%22Cordero%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sang-Jong%22%2C%22lastName%22%3A%22Park%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Steve%22%2C%22lastName%22%3A%22Colwell%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthew%20A.%22%2C%22lastName%22%3A%22Lazzara%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jorge%22%2C%22lastName%22%3A%22Carrasco%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Adriana%20Maria%22%2C%22lastName%22%3A%22Gulisano%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Svitlana%22%2C%22lastName%22%3A%22Krakovska%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%20Martin%22%2C%22lastName%22%3A%22Ralph%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Thomas%22%2C%22lastName%22%3A%22Dethinne%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ghislain%22%2C%22lastName%22%3A%22Picard%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20The%20Antarctic%20Peninsula%20%28AP%29%20experienced%20a%20new%20extreme%20warm%20event%20and%20record-high%20surface%20melt%20in%20February%202022%2C%20rivaling%20the%20recent%20temperature%20records%20from%202015%20and%202020%2C%20and%20contributing%20to%20the%20alarming%20series%20of%20extreme%20warm%20events%20over%20this%20region%20showing%20stronger%20warming%20compared%20to%20the%20rest%20of%20Antarctica.%20Here%2C%20the%20drivers%20and%20impacts%20of%20the%20event%20are%20analyzed%20in%20detail%20using%20a%20range%20of%20observational%20and%20modeling%20data.%20The%20northern%5C%2Fnorthwestern%20AP%20was%20directly%20impacted%20by%20an%20intense%20atmospheric%20river%20%28AR%29%20attaining%20category%203%20on%20the%20AR%20scale%2C%20which%20brought%20anomalous%20heat%20and%20rainfall%2C%20while%20the%20AR-enhanced%20foehn%20effect%20further%20warmed%20its%20northeastern%20side.%20The%20event%20was%20triggered%20by%20multiple%20large-scale%20atmospheric%20circulation%20patterns%20linking%20the%20AR%20formation%20to%20tropical%20convection%20anomalies%20and%20stationary%20Rossby%20waves%2C%20with%20an%20anomalous%20Amundsen%20Sea%20Low%20and%20a%20record-breaking%20high-pressure%20system%20east%20of%20the%20AP.%20This%20multivariate%20and%20spatial%20compound%20event%20culminated%20in%20widespread%20and%20intense%20surface%20melt%20across%20the%20AP.%20Circulation%20analog%20analysis%20shows%20that%20global%20warming%20played%20a%20role%20in%20the%20amplification%20and%20increased%20probability%20of%20the%20event.%20Increasing%20frequency%20of%20such%20events%20can%20undermine%20the%20stability%20of%20the%20AP%20ice%20shelves%2C%20with%20multiple%20local%20to%20global%20impacts%2C%20including%20acceleration%20of%20the%20AP%20ice%20mass%20loss%20and%20changes%20in%20sensitive%20ecosystems.%22%2C%22date%22%3A%222023-12-04%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1038%5C%2Fs41612-023-00529-6%22%2C%22ISSN%22%3A%222397-3722%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.nature.com%5C%2Farticles%5C%2Fs41612-023-00529-6%22%2C%22collections%22%3A%5B%223BVIFSK4%22%5D%2C%22dateModified%22%3A%222024-02-28T23%3A51%3A55Z%22%7D%7D%2C%7B%22key%22%3A%2249PW4IA4%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Zou%20et%20al.%22%2C%22parsedDate%22%3A%222023-10-27%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EZou%2C%20X.%2C%20Cordeira%2C%20J.%20M.%2C%20Bartlett%2C%20S.%20M.%2C%20Kawzenuk%2C%20B.%2C%20Roj%2C%20S.%2C%20Castellano%2C%20C.%2C%20Hecht%2C%20C.%2C%20%26amp%3B%20%3Cstrong%3ERalph%3C%5C%2Fstrong%3E%2C%20F.%20M.%20%282023%29.%20Mesoscale%20and%20Synoptic%20Scale%20Analysis%20of%20Narrow%20Cold%20Frontal%20Rainband%20During%20a%20Landfalling%20Atmospheric%20River%20in%20California%20During%20January%202021.%20%3Ci%3EJournal%20of%20Geophysical%20Research%3A%20Atmospheres%3C%5C%2Fi%3E%2C%20%3Ci%3E128%3C%5C%2Fi%3E%2820%29%2C%20e2023JD039426.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2023JD039426%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2023JD039426%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Mesoscale%20and%20Synoptic%20Scale%20Analysis%20of%20Narrow%20Cold%20Frontal%20Rainband%20During%20a%20Landfalling%20Atmospheric%20River%20in%20California%20During%20January%202021%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xun%22%2C%22lastName%22%3A%22Zou%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jason%20M.%22%2C%22lastName%22%3A%22Cordeira%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Samuel%20M.%22%2C%22lastName%22%3A%22Bartlett%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Brian%22%2C%22lastName%22%3A%22Kawzenuk%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Shawn%22%2C%22lastName%22%3A%22Roj%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christopher%22%2C%22lastName%22%3A%22Castellano%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Chad%22%2C%22lastName%22%3A%22Hecht%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%20Martin%22%2C%22lastName%22%3A%22Ralph%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Narrow%20cold%5Cu2010frontal%20rain%20bands%20%28NCFR%29%20often%20produce%20short%5Cu2010duration%20and%20high%5Cu2010intensity%20precipitation%20that%20can%20lead%20to%20flooding%20and%20debris%20flow%20in%20California%20%28CA%29.%20On%2027%20January%202021%2C%20an%20atmospheric%20river%20%28AR%29%20associated%20with%20an%20intense%20surface%20cyclone%20made%20landfall%20over%20coastal%20northern%20CA%2C%20which%20featured%20a%20prominent%20NCFR.%20This%20study%20uses%20high%5Cu2010resolution%20West%20Weather%20Research%20and%20Forecasting%20simulations%20to%20accurately%20resolve%20the%20gap%20and%20core%20structure%20of%20the%20NCFR%20and%20provide%20reliable%20precipitation%20estimations%2C%20compensating%20for%20limitations%20of%20radar%20and%20satellite%20observations.%20This%20NCFR%20was%20supported%20by%20robust%20synoptic%5Cu2010scale%20quasi%5Cu2010geostrophic%20%28QG%29%20forcing%20for%20ascent%20and%20frontogenesis.%20It%20propagated%20southward%20from%20Cape%20Mendocino%20to%20Big%20Sur%20in%2012%5Cu00a0hr%20before%20stalling%20and%20rotating%20counter%5Cu2010clockwise%20in%20central%5C%2Fsouthern%20CA%20due%20to%20upstream%20Rossby%20wave%20breaking%20and%20an%20amplifying%20upper%5Cu2010tropospheric%20trough.%20With%20the%20lower%20to%20middle%20tropospheric%20flow%20backed%20considerably%20to%20the%20south%5Cu2010southwest%20over%20the%20NCFR%2C%20the%20increase%20of%20the%20vertical%20wind%20shear%20caused%20the%20transition%20from%20parallel%20to%20trailing%20stratiform%20precipitation.%20The%20stall%20and%20pivot%20of%20the%20AR%20and%20NCFR%20led%20to%20intense%20rainfall%20with%20a%202%5Cu2010day%20precipitation%20accumulation%20greater%20than%20300%5Cu00a0mm%20over%20central%20CA.%20In%20addition%2C%20under%20the%20potential%20instability%20and%20frontogenesis%2C%20a%20moist%20absolutely%20unstable%20layer%20between%20850%20and%20700%5Cu00a0hPa%20was%20captured%20at%20the%20leading%20edge%20of%20the%20NCFR%2C%20which%20indicated%20slantwise%20deep%20layer%20lifting%20and%20high%20precipitation%20efficiency.%20This%20study%20reveals%20synoptic%5Cu2010scale%20and%20mesoscale%20drivers%20of%20rainfall%20outside%20orographic%20lifting%20and%20reaffirms%20the%20importance%20of%20high%5Cu2010resolution%20numerical%20modeling%20for%20the%20prediction%20of%20extreme%20precipitation%20and%20related%20natural%20hazards.%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Plain%20Language%20Summary%5Cn%20%20%20%20%20%20%20%20%20%20%20%20California%20often%20experiences%20short%5Cu2010duration%2C%20high%5Cu2010intensity%20rainfall%20associated%20with%20landfalling%20atmospheric%20rivers%20%28ARs%29%2C%20which%20are%20long%2C%20thin%20corridors%20of%20moisture%20in%20the%20atmosphere.%20They%20can%20trigger%20post%5Cu2010fire%20debris%20flows%2C%20shallow%20landslides%2C%20and%20flash%20flooding.%20This%20study%20examines%20characteristics%20of%20the%20high%20impact%20landfalling%20AR%20from%20January%202021%20via%20high%5Cu2010resolution%20model%20simulations.%20The%20landfalling%20AR%2C%20associated%20with%20an%20intense%20surface%20cyclone%20over%20the%20Northeast%20Pacific%2C%20moved%20southward%20through%2027%20January%20prior%20to%20stalling%20along%20the%20central%20California%20Coast%20on%2028%20January.%20Due%20to%20the%20stalling%20and%20pivoting%20of%20the%20AR%2C%20the%20coast%20of%20central%20and%20southern%20California%20experienced%20a%20long%5Cu2010duration%20period%20of%20moderate%20precipitation%2C%20large%5Cu2010scale%20forcing%20for%20ascent%20and%20short%20duration%20periods%20of%20intense%20precipitation.%20In%20addition%2C%20the%20intense%20precipitation%20along%20the%20cold%20front%20can%20be%20explained%20an%20effective%20dynamic%20lifting%20of%20a%20deep%20layer%20of%20atmosphere.%20This%20event%20caused%20a%20partial%20collapse%20of%20Highway%201%20in%20Northern%20California%20and%20produced%20%3E375%5Cu00a0mm%20of%20rainfall%20at%20Las%20Tablas%2C%20which%20led%20to%20a%20post%5Cu2010fire%20debris%20flow%20%5Cu223c30%5Cu00a0km%20south%20of%20Big%20Sur.%20High%5Cu2010resolution%20weather%20modeling%20reveals%20the%20physical%20processes%20of%20precipitation%20and%20is%20necessary%20for%20the%20prediction%20of%20extreme%20precipitation%20and%20related%20natural%20hazards.%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Key%20Points%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20This%20atmospheric%20river%20caused%20sustained%20rainfall%20and%20short%5Cu2010duration%20precipitation%20related%20to%20a%20narrow%20cold%5Cu2010frontal%20rainband%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20The%20narrow%20cold%5Cu2010frontal%20rainband%20is%20mainly%20driven%20by%20synoptic%5Cu2010scale%20quasi%5Cu2010geostrophic%20forcing%20for%20ascent%20and%20frontogenesis%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20High%5Cu2010resolution%20modeling%20is%20necessary%20to%20improve%20the%20understanding%20and%20predictability%20of%20high%5Cu2010intensity%20short%5Cu2010duration%20precipitation%22%2C%22date%22%3A%222023-10-27%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1029%5C%2F2023JD039426%22%2C%22ISSN%22%3A%222169-897X%2C%202169-8996%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fagupubs.onlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1029%5C%2F2023JD039426%22%2C%22collections%22%3A%5B%223BVIFSK4%22%5D%2C%22dateModified%22%3A%222023-12-01T18%3A56%3A48Z%22%7D%7D%2C%7B%22key%22%3A%22N4PCHQN2%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Zou%20et%20al.%22%2C%22parsedDate%22%3A%222023-08-27%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EZou%2C%20X.%2C%20Rowe%2C%20P.%20M.%2C%20Gorodetskaya%2C%20I.%2C%20Bromwich%2C%20D.%20H.%2C%20Lazzara%2C%20M.%20A.%2C%20Cordero%2C%20R.%20R.%2C%20Zhang%2C%20Z.%2C%20Kawzenuk%2C%20B.%2C%20Cordeira%2C%20J.%20M.%2C%20Wille%2C%20J.%20D.%2C%20%3Cstrong%3ERalph%3C%5C%2Fstrong%3E%2C%20F.%20M.%2C%20%26amp%3B%20Bai%2C%20L.%20%282023%29.%20Strong%20Warming%20Over%20the%20Antarctic%20Peninsula%20During%20Combined%20Atmospheric%20River%20and%20Foehn%20Events%3A%20Contribution%20of%20Shortwave%20Radiation%20and%20Turbulence.%20%3Ci%3EJournal%20of%20Geophysical%20Research%3A%20Atmospheres%3C%5C%2Fi%3E%2C%20%3Ci%3E128%3C%5C%2Fi%3E%2816%29%2C%20e2022JD038138.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2022JD038138%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2022JD038138%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Strong%20Warming%20Over%20the%20Antarctic%20Peninsula%20During%20Combined%20Atmospheric%20River%20and%20Foehn%20Events%3A%20Contribution%20of%20Shortwave%20Radiation%20and%20Turbulence%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xun%22%2C%22lastName%22%3A%22Zou%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Penny%20M.%22%2C%22lastName%22%3A%22Rowe%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Irina%22%2C%22lastName%22%3A%22Gorodetskaya%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22David%20H.%22%2C%22lastName%22%3A%22Bromwich%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthew%20A.%22%2C%22lastName%22%3A%22Lazzara%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Raul%20R.%22%2C%22lastName%22%3A%22Cordero%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Zhenhai%22%2C%22lastName%22%3A%22Zhang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Brian%22%2C%22lastName%22%3A%22Kawzenuk%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jason%20M.%22%2C%22lastName%22%3A%22Cordeira%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jonathan%20D.%22%2C%22lastName%22%3A%22Wille%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%20Martin%22%2C%22lastName%22%3A%22Ralph%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Le%5Cu2010Sheng%22%2C%22lastName%22%3A%22Bai%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20The%20Antarctica%20Peninsula%20%28AP%29%20has%20experienced%20more%20frequent%20and%20intense%20surface%20melting%20recently%2C%20jeopardizing%20the%20stability%20of%20ice%20shelves%20and%20ultimately%20leading%20to%20ice%20loss.%20Among%20the%20key%20phenomena%20that%20can%20initiate%20surface%20melting%20are%20atmospheric%20rivers%20%28ARs%29%20and%20leeside%20foehn%3B%20the%20combined%20impact%20of%20ARs%20and%20foehn%20led%20to%20moderate%20surface%20warming%20over%20the%20AP%20in%20December%202018%20and%20record%5Cu2010breaking%20surface%20melting%20in%20February%202022.%20Focusing%20on%20the%20more%20intense%202022%20case%2C%20this%20study%20uses%20high%5Cu2010resolution%20Polar%20WRF%20simulations%20with%20advanced%20model%20configurations%2C%20Reference%20Elevation%20Model%20of%20Antarctica%20topography%2C%20and%20observed%20surface%20albedo%20to%20better%20understand%20the%20relationship%20between%20ARs%20and%20foehn%20and%20their%20impacts%20on%20surface%20warming.%20With%20an%20intense%20AR%20%28AR3%29%20intrusion%20during%20the%202022%20event%2C%20weak%20low%5Cu2010level%20blocking%20and%20heavy%20orographic%20precipitation%20on%20the%20upwind%20side%20resulted%20in%20latent%20heat%20release%2C%20which%20led%20to%20a%20more%20deep%5Cu2010foehn%20like%20case.%20On%20the%20leeside%2C%20sensible%20heat%20flux%20associated%20with%20the%20foehn%20magnitude%20was%20the%20major%20driver%20during%20the%20night%20and%20the%20secondary%20contributor%20during%20the%20day%20due%20to%20a%20stationary%20orographic%20gravity%20wave.%20Downward%20shortwave%20radiation%20was%20enhanced%20via%20cloud%20clearance%20and%20dominated%20surface%20melting%20during%20the%20daytime%2C%20especially%20after%20the%20peak%20of%20the%20AR%5C%2Ffoehn%20events.%20However%2C%20due%20to%20the%20complex%20terrain%20of%20the%20AP%2C%20ARs%20can%20complicate%20the%20foehn%20event%20by%20transporting%20extra%20moisture%20to%20the%20leeside%20via%20gap%20flows.%20During%20the%20peak%20of%20the%202022%20foehn%20warming%2C%20cloud%20formation%20on%20the%20leeside%20hampered%20the%20downward%20shortwave%20radiation%20and%20slightly%20increased%20the%20downward%20longwave%20radiation.%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Plain%20Language%20Summary%5Cn%20%20%20%20%20%20%20%20%20%20%20%20On%20the%20Antarctic%20Peninsula%20%28AP%29%2C%20when%20ice%20shelves%20break%20up%2C%20glaciers%20flow%20faster%20from%20the%20land%20into%20the%20sea%2C%20leading%20to%20ice%20loss%20and%20increasing%20sea%20level%20rise.%20Surface%20warming%20is%20projected%20to%20double%20by%202050%20over%20Antarctica%20and%20may%20have%20led%20to%20ice%20shelf%20collapse.%20Two%20phenomena%20that%20enhance%20surface%20warming%20are%20atmospheric%20rivers%2C%20%28long%20corridors%20of%20moisture%20in%20the%20atmosphere%29%20and%20leeside%20foehn%20effects%20%28cooler%20and%20moist%20air%20advection%20on%20the%20upwind%20side%20that%20becomes%20warmer%20and%20drier%20when%20descending%20on%20the%20leeside%29.%20Here%20we%20study%20two%20combined%20atmospheric%20river%20and%20foehn%20events%20that%20led%20to%20surface%20warming%20on%20the%20AP%2C%20occurring%20in%20December%202018%20and%20February%202022.%20The%20main%20warming%20mechanism%20in%20the%20northeastern%20AP%20during%20the%20nighttime%20was%20transfer%20of%20heat%20from%20the%20air%20to%20the%20ice%20surface%20%28sensible%20heat%20flux%29%2C%20while%20the%20main%20mechanism%20during%20the%20daytime%20was%20intense%20sunlight%2C%20which%20was%20able%20to%20reach%20the%20surface%20because%20of%20clear%20skies%20on%20the%20opposite%20%28lee%29%20side%20caused%20by%20foehn.%20However%2C%20complicating%20the%20picture%2C%20there%20are%20gaps%20in%20the%20AP%20mountain%20range%20that%20let%20the%20atmospheric%20river%20through%2C%20allowing%20clouds%20to%20form%20on%20the%20other%20side%2C%20which%20then%20blocked%20some%20of%20the%20sunlight.%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Key%20Points%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20This%20study%20investigates%20the%20atmospheric%20river%20and%20foehn%20warming%20over%20the%20Antarctic%20Peninsula%20via%20observations%20and%20model%20simulations%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Atmospheric%20rivers%20led%20to%20stronger%20precipitation%20on%20the%20upwind%20side%20and%20favored%20the%20foehn%5Cu2010related%20sensible%20heat%20transfer%20on%20the%20leeside%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Under%20the%20combined%20atmospheric%20rivers%20and%20foehn%2C%20shortwave%20radiation%20contributed%20the%20most%20to%20the%20ice%20surface%20warming%2C%20followed%20by%20sensible%20heat%20flux%22%2C%22date%22%3A%222023-08-27%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1029%5C%2F2022JD038138%22%2C%22ISSN%22%3A%222169-897X%2C%202169-8996%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fagupubs.onlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1029%5C%2F2022JD038138%22%2C%22collections%22%3A%5B%2244X4EX84%22%2C%223BVIFSK4%22%5D%2C%22dateModified%22%3A%222024-04-12T21%3A11%3A46Z%22%7D%7D%2C%7B%22key%22%3A%22NZB8GW5G%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Lavers%20et%20al.%22%2C%22parsedDate%22%3A%222023-08-08%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ELavers%2C%20D.%20A.%2C%20Torn%2C%20R.%20D.%2C%20Davis%2C%20C.%2C%20Richardson%2C%20D.%20S.%2C%20%3Cstrong%3ERalph%3C%5C%2Fstrong%3E%2C%20F.%20M.%2C%20%26amp%3B%20Pappenberger%2C%20F.%20%282023%29.%20Forecast%20evaluation%20of%20the%20North%20Pacific%20jet%20stream%20using%20%3Cspan%20style%3D%5C%22font-variant%3Asmall-caps%3B%5C%22%3EAR%3C%5C%2Fspan%3E%20Recon%20dropwindsondes.%20%3Ci%3EQuarterly%20Journal%20of%20the%20Royal%20Meteorological%20Society%3C%5C%2Fi%3E%2C%20qj.4545.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fqj.4545%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fqj.4545%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Forecast%20evaluation%20of%20the%20North%20Pacific%20jet%20stream%20using%20%3Cspan%20style%3D%5C%22font-variant%3Asmall-caps%3B%5C%22%3EAR%3C%5C%2Fspan%3E%20Recon%20dropwindsondes%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22David%20A.%22%2C%22lastName%22%3A%22Lavers%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ryan%20D.%22%2C%22lastName%22%3A%22Torn%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Chris%22%2C%22lastName%22%3A%22Davis%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22David%20S.%22%2C%22lastName%22%3A%22Richardson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%20Martin%22%2C%22lastName%22%3A%22Ralph%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Florian%22%2C%22lastName%22%3A%22Pappenberger%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20The%20term%20jet%20stream%20generally%20refers%20to%20a%20narrow%20region%20of%20intense%20winds%20near%20the%20top%20of%20the%20midlatitude%20or%20subtropical%20troposphere.%20It%20is%20in%20the%20midlatitude%20jet%20stream%20where%20instabilities%20and%20waves%20may%20develop%20into%20synoptic%5Cu2010scale%20systems%2C%20which%20in%20turn%20makes%20accurately%20resolving%20the%20structure%20of%20the%20jet%20stream%20and%20associated%20features%20critical%20for%20atmospheric%20development%2C%20predictability%2C%20and%20impacts%2C%20such%20as%20extreme%20precipitation%20and%20winds.%20Using%20dropwindsonde%20observations%20collected%20during%20the%20Atmospheric%20River%20Reconnaissance%20%28AR%20Recon%29%20campaign%20from%202020%20to%202022%2C%20this%20study%20assesses%20the%20North%20Pacific%20jet%20stream%20structure%20in%20the%20European%20Centre%20for%20Medium%5Cu2010Range%20Weather%20Forecasts%20%28ECMWF%29%20Integrated%20Forecasting%20System%20%28IFS%29.%20Results%20show%20that%20the%20IFS%20has%20a%20slow%5Cu2010wind%20bias%20on%20the%20lead%20times%20assessed%2C%20with%20the%20strongest%20winds%20%28%5Cu226550%5Cu2009m%5Cu00b7s%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu22121%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29%20having%20a%20bias%20of%20up%20to%20%5Cu22121.88%5Cu2009m%5Cu00b7s%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu22121%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20on%20forecast%20day%204.%20Also%2C%20the%20IFS%20cannot%20resolve%20the%20sharp%20potential%20vorticity%20%28PV%29%20gradient%20across%20the%20jet%20stream%20and%20tropopause%2C%20and%20this%20PV%20gradient%20weakens%20with%20forecast%20lead%20time.%20Cases%20with%20larger%20wind%20biases%20are%20characterized%20by%20higher%20PV%20biases%20and%20PV%20biases%20tend%20to%20be%20larger%20for%20cases%20with%20a%20higher%20horizontal%20PV%20gradient.%20These%20results%20suggest%20that%20further%20model%5Cu2010based%20experiments%20are%20needed%20to%20identify%20and%20address%20these%20biases%2C%20which%20could%20ultimately%20yield%20increased%20forecast%20accuracy.%22%2C%22date%22%3A%222023-08-08%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1002%5C%2Fqj.4545%22%2C%22ISSN%22%3A%220035-9009%2C%201477-870X%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Frmets.onlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1002%5C%2Fqj.4545%22%2C%22collections%22%3A%5B%223BVIFSK4%22%5D%2C%22dateModified%22%3A%222023-09-13T21%3A52%3A17Z%22%7D%7D%2C%7B%22key%22%3A%227HQUQW4U%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Shulgina%20et%20al.%22%2C%22parsedDate%22%3A%222023-05-25%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EShulgina%2C%20T.%2C%20Gershunov%2C%20A.%2C%20Hatchett%2C%20B.%20J.%2C%20Guirguis%2C%20K.%2C%20Subramanian%2C%20A.%20C.%2C%20Margulis%2C%20S.%20A.%2C%20Fang%2C%20Y.%2C%20Cayan%2C%20D.%20R.%2C%20Pierce%2C%20D.%20W.%2C%20Dettinger%2C%20M.%2C%20Anderson%2C%20M.%20L.%2C%20%26amp%3B%20%3Cstrong%3ERalph%3C%5C%2Fstrong%3E%2C%20F.%20M.%20%282023%29.%20Observed%20and%20projected%20changes%20in%20snow%20accumulation%20and%20snowline%20in%20California%26%23x2019%3Bs%20snowy%20mountains.%20%3Ci%3EClimate%20Dynamics%3C%5C%2Fi%3E.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1007%5C%2Fs00382-023-06776-w%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1007%5C%2Fs00382-023-06776-w%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Observed%20and%20projected%20changes%20in%20snow%20accumulation%20and%20snowline%20in%20California%5Cu2019s%20snowy%20mountains%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Tamara%22%2C%22lastName%22%3A%22Shulgina%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alexander%22%2C%22lastName%22%3A%22Gershunov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Benjamin%20J.%22%2C%22lastName%22%3A%22Hatchett%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Kristen%22%2C%22lastName%22%3A%22Guirguis%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Aneesh%20C.%22%2C%22lastName%22%3A%22Subramanian%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Steven%20A.%22%2C%22lastName%22%3A%22Margulis%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yiwen%22%2C%22lastName%22%3A%22Fang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Daniel%20R.%22%2C%22lastName%22%3A%22Cayan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22David%20W.%22%2C%22lastName%22%3A%22Pierce%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Michael%22%2C%22lastName%22%3A%22Dettinger%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Michael%20L.%22%2C%22lastName%22%3A%22Anderson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%20Martin%22%2C%22lastName%22%3A%22Ralph%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20The%20Sierra%20Nevada%20and%20Southern%20Cascades%5Cu2014California%5Cu2019s%20snowy%20mountains%5Cu2014are%20primary%20freshwater%20sources%20and%20natural%20reservoirs%20for%20the%20states%20of%20California%20and%20Nevada.%20These%20mountains%20receive%20precipitation%20overwhelmingly%20from%20wintertime%20storms%20including%20atmospheric%20rivers%20%28ARs%29%2C%20much%20of%20it%20falling%20as%20snow%20at%20the%20higher%20elevations.%20Using%20a%20seven-decade%20record%20of%20daily%20observed%20temperature%20and%20precipitation%20as%20well%20as%20a%20snow%20reanalysis%20and%20downscaled%20climate%20projections%2C%20we%20documented%20historical%20and%20future%20changes%20in%20snow%20accumulation%20and%20snowlines.%20In%20four%20key%20subregions%20of%20California%5Cu2019s%20snowy%20mountains%2C%20we%20quantified%20the%20progressing%20contribution%20of%20ARs%20and%20non-AR%20storms%20to%20the%20evolving%20and%20projected%20snow%20accumulation%20and%20snowlines%20%28elevation%20of%20the%20snow-to-rain%20transition%29%2C%20exploring%20their%20climatology%2C%20variability%20and%20trends.%20Historically%2C%20snow%20makes%20up%20roughly%20a%20third%20of%20the%20precipitation%20affecting%20California%5Cu2019s%20mountains.%20While%20ARs%20make%20up%20only%20a%20quarter%20of%20all%20precipitating%20days%20and%2C%20due%20to%20their%20relative%20warmth%2C%20produce%20snowlines%20higher%20than%20do%20other%20storms%2C%20they%20contribute%20over%2040%25%20of%20the%20total%20seasonal%20snow.%20Under%20projected%20unabated%20warming%2C%20snow%20accumulation%20would%20decline%20to%20less%20than%20half%20of%20historical%20by%20the%5Cu00a0late%20twenty-first%20century%2C%20with%20the%20greatest%20snow%20loss%20at%20mid%20elevations%20%28from%201500%20to%203300%5Cu00a0m%20by%20the%20mountain%20sub-regions%29%20during%20fall%20and%20spring.%20Central%20and%20Southern%20Sierra%20Nevada%20peaks%20above%203400%5Cu00a0m%20might%20see%20occasionally%20extreme%20snow%20accumulations%20in%20January%5Cu2013February%20resulting%20entirely%20from%20wetter%20ARs.%20AR-related%20snowlines%20are%20projected%20to%20increase%20by%20more%20than%20700%5Cu00a0m%2C%20compared%20to%20about%20500%5Cu00a0m%20for%20other%20storms.%20We%20discuss%20likely%20impacts%20of%20the%20changing%20climate%20for%20water%20resources%20as%20well%20as%20for%20winter%20recreation.%22%2C%22date%22%3A%222023-05-25%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1007%5C%2Fs00382-023-06776-w%22%2C%22ISSN%22%3A%220930-7575%2C%201432-0894%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flink.springer.com%5C%2F10.1007%5C%2Fs00382-023-06776-w%22%2C%22collections%22%3A%5B%222CJDBIH8%22%2C%223BVIFSK4%22%2C%227J6PFJNF%22%2C%228U6EVDVF%22%2C%22P26VLJMP%22%2C%22XPQ3R656%22%5D%2C%22dateModified%22%3A%222023-05-31T20%3A50%3A14Z%22%7D%7D%2C%7B%22key%22%3A%22K5TL6EK6%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Zhang%20et%20al.%22%2C%22parsedDate%22%3A%222023-04-16%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EZhang%2C%20Z.%2C%20DeFlorio%2C%20M.%20J.%2C%20Delle%20Monache%2C%20L.%2C%20Subramanian%2C%20A.%20C.%2C%20%3Cstrong%3ERalph%3C%5C%2Fstrong%3E%2C%20F.%20M.%2C%20Waliser%2C%20D.%20E.%2C%20Zheng%2C%20M.%2C%20Guan%2C%20B.%2C%20Goodman%2C%20A.%2C%20Molod%2C%20A.%20M.%2C%20Vitart%2C%20F.%2C%20Kumar%2C%20A.%2C%20%26amp%3B%20Lin%2C%20H.%20%282023%29.%20Multi%26%23x2010%3BModel%20Subseasonal%20Prediction%20Skill%20Assessment%20of%20Water%20Vapor%20Transport%20Associated%20With%20Atmospheric%20Rivers%20Over%20the%20Western%20U.S.%20%3Ci%3EJournal%20of%20Geophysical%20Research%3A%20Atmospheres%3C%5C%2Fi%3E%2C%20%3Ci%3E128%3C%5C%2Fi%3E%287%29%2C%20e2022JD037608.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2022JD037608%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2022JD037608%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Multi%5Cu2010Model%20Subseasonal%20Prediction%20Skill%20Assessment%20of%20Water%20Vapor%20Transport%20Associated%20With%20Atmospheric%20Rivers%20Over%20the%20Western%20U.S.%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Zhenhai%22%2C%22lastName%22%3A%22Zhang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Michael%20J.%22%2C%22lastName%22%3A%22DeFlorio%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Luca%22%2C%22lastName%22%3A%22Delle%20Monache%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Aneesh%20C.%22%2C%22lastName%22%3A%22Subramanian%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%20Martin%22%2C%22lastName%22%3A%22Ralph%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Duane%20E.%22%2C%22lastName%22%3A%22Waliser%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Minghua%22%2C%22lastName%22%3A%22Zheng%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bin%22%2C%22lastName%22%3A%22Guan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alexander%22%2C%22lastName%22%3A%22Goodman%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrea%20M.%22%2C%22lastName%22%3A%22Molod%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Frederic%22%2C%22lastName%22%3A%22Vitart%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Arun%22%2C%22lastName%22%3A%22Kumar%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Hai%22%2C%22lastName%22%3A%22Lin%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222023-04-16%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1029%5C%2F2022JD037608%22%2C%22ISSN%22%3A%222169-897X%2C%202169-8996%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fagupubs.onlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1029%5C%2F2022JD037608%22%2C%22collections%22%3A%5B%223BVIFSK4%22%2C%22GS9TJSRH%22%2C%22FCUZWX58%22%5D%2C%22dateModified%22%3A%222023-05-03T16%3A09%3A43Z%22%7D%7D%2C%7B%22key%22%3A%225WYDA9GH%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Shields%20et%20al.%22%2C%22parsedDate%22%3A%222023-03-28%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EShields%2C%20C.%20A.%2C%20Payne%2C%20A.%20E.%2C%20Shearer%2C%20E.%20J.%2C%20Wehner%2C%20M.%20F.%2C%20O%26%23x2019%3BBrien%2C%20T.%20A.%2C%20Rutz%2C%20J.%20J.%2C%20Leung%2C%20L.%20R.%2C%20%3Cstrong%3ERalph%3C%5C%2Fstrong%3E%2C%20F.%20M.%2C%20Marquardt%20Collow%2C%20A.%20B.%2C%20Ullrich%2C%20P.%20A.%2C%20Dong%2C%20Q.%2C%20Gershunov%2C%20A.%2C%20Griffith%2C%20H.%2C%20Guan%2C%20B.%2C%20Lora%2C%20J.%20M.%2C%20Lu%2C%20M.%2C%20McClenny%2C%20E.%2C%20Nardi%2C%20K.%20M.%2C%20Pan%2C%20M.%2C%20%26%23x2026%3B%20Zarzycki%2C%20C.%20%282023%29.%20Future%20Atmospheric%20Rivers%20and%20Impacts%20on%20Precipitation%3A%20Overview%20of%20the%20ARTMIP%20Tier%202%20High%26%23x2010%3BResolution%20Global%20Warming%20Experiment.%20%3Ci%3EGeophysical%20Research%20Letters%3C%5C%2Fi%3E%2C%20%3Ci%3E50%3C%5C%2Fi%3E%286%29%2C%20e2022GL102091.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2022GL102091%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2022GL102091%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Future%20Atmospheric%20Rivers%20and%20Impacts%20on%20Precipitation%3A%20Overview%20of%20the%20ARTMIP%20Tier%202%20High%5Cu2010Resolution%20Global%20Warming%20Experiment%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christine%20A.%22%2C%22lastName%22%3A%22Shields%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ashley%20E.%22%2C%22lastName%22%3A%22Payne%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Eric%20Jay%22%2C%22lastName%22%3A%22Shearer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Michael%20F.%22%2C%22lastName%22%3A%22Wehner%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Travis%20Allen%22%2C%22lastName%22%3A%22O%5Cu2019Brien%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jonathan%20J.%22%2C%22lastName%22%3A%22Rutz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%20Ruby%22%2C%22lastName%22%3A%22Leung%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%20Martin%22%2C%22lastName%22%3A%22Ralph%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Allison%20B.%22%2C%22lastName%22%3A%22Marquardt%20Collow%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Paul%20A.%22%2C%22lastName%22%3A%22Ullrich%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Qizhen%22%2C%22lastName%22%3A%22Dong%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alexander%22%2C%22lastName%22%3A%22Gershunov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Helen%22%2C%22lastName%22%3A%22Griffith%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bin%22%2C%22lastName%22%3A%22Guan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Juan%20Manuel%22%2C%22lastName%22%3A%22Lora%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mengqian%22%2C%22lastName%22%3A%22Lu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Elizabeth%22%2C%22lastName%22%3A%22McClenny%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Kyle%20M.%22%2C%22lastName%22%3A%22Nardi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mengxin%22%2C%22lastName%22%3A%22Pan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yun%22%2C%22lastName%22%3A%22Qian%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alexandre%20M.%22%2C%22lastName%22%3A%22Ramos%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Tamara%22%2C%22lastName%22%3A%22Shulgina%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Maximiliano%22%2C%22lastName%22%3A%22Viale%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Chandan%22%2C%22lastName%22%3A%22Sarangi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ricardo%22%2C%22lastName%22%3A%22Tom%5Cu00e9%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Colin%22%2C%22lastName%22%3A%22Zarzycki%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222023-03-28%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1029%5C%2F2022GL102091%22%2C%22ISSN%22%3A%220094-8276%2C%201944-8007%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fagupubs.onlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1029%5C%2F2022GL102091%22%2C%22collections%22%3A%5B%223BVIFSK4%22%2C%227J6PFJNF%22%2C%22P26VLJMP%22%5D%2C%22dateModified%22%3A%222023-06-22T23%3A27%3A52Z%22%7D%7D%2C%7B%22key%22%3A%22GPDLMEE9%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Castellano%20et%20al.%22%2C%22parsedDate%22%3A%222023-03-27%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ECastellano%2C%20C.%20M.%2C%20DeFlorio%2C%20M.%20J.%2C%20Gibson%2C%20P.%20B.%2C%20Delle%20Monache%2C%20L.%2C%20Kalansky%2C%20J.%20F.%2C%20Wang%2C%20J.%2C%20Guirguis%2C%20K.%2C%20Gershunov%2C%20A.%2C%20%3Cstrong%3ERalph%3C%5C%2Fstrong%3E%2C%20F.%20M.%2C%20Subramanian%2C%20A.%20C.%2C%20%26amp%3B%20Anderson%2C%20M.%20L.%20%282023%29.%20Development%20of%20a%20Statistical%20Subseasonal%20Forecast%20Tool%20to%20Predict%20California%20Atmospheric%20Rivers%20and%20Precipitation%20Based%20on%20MJO%20and%20QBO%20Activity.%20%3Ci%3EJournal%20of%20Geophysical%20Research%3A%20Atmospheres%3C%5C%2Fi%3E%2C%20%3Ci%3E128%3C%5C%2Fi%3E%286%29%2C%20e2022JD037360.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2022JD037360%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2022JD037360%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Development%20of%20a%20Statistical%20Subseasonal%20Forecast%20Tool%20to%20Predict%20California%20Atmospheric%20Rivers%20and%20Precipitation%20Based%20on%20MJO%20and%20QBO%20Activity%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christopher%20M.%22%2C%22lastName%22%3A%22Castellano%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Michael%20J.%22%2C%22lastName%22%3A%22DeFlorio%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Peter%20B.%22%2C%22lastName%22%3A%22Gibson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Luca%22%2C%22lastName%22%3A%22Delle%20Monache%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Julie%20F.%22%2C%22lastName%22%3A%22Kalansky%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jiabao%22%2C%22lastName%22%3A%22Wang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Kristen%22%2C%22lastName%22%3A%22Guirguis%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alexander%22%2C%22lastName%22%3A%22Gershunov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%20Martin%22%2C%22lastName%22%3A%22Ralph%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Aneesh%20C.%22%2C%22lastName%22%3A%22Subramanian%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Michael%20L.%22%2C%22lastName%22%3A%22Anderson%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222023-03-27%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1029%5C%2F2022JD037360%22%2C%22ISSN%22%3A%222169-897X%2C%202169-8996%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fagupubs.onlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1029%5C%2F2022JD037360%22%2C%22collections%22%3A%5B%223BVIFSK4%22%2C%227J6PFJNF%22%2C%22GS9TJSRH%22%2C%228U6EVDVF%22%2C%22FCUZWX58%22%5D%2C%22dateModified%22%3A%222023-04-10T22%3A36%3A35Z%22%7D%7D%2C%7B%22key%22%3A%2244NZUZ78%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Hu%20et%20al.%22%2C%22parsedDate%22%3A%222023-03-08%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EHu%2C%20W.%2C%20Ghazvinian%2C%20M.%2C%20Chapman%2C%20W.%20E.%2C%20Sengupta%2C%20A.%2C%20%3Cstrong%3ERalph%3C%5C%2Fstrong%3E%2C%20F.%20M.%2C%20%26amp%3B%20Delle%20Monache%2C%20L.%20%282023%29.%20Deep%20Learning%20Forecast%20Uncertainty%20for%20Precipitation%20over%20Western%20US.%20%3Ci%3EMonthly%20Weather%20Review%3C%5C%2Fi%3E.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1175%5C%2FMWR-D-22-0268.1%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1175%5C%2FMWR-D-22-0268.1%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Deep%20Learning%20Forecast%20Uncertainty%20for%20Precipitation%20over%20Western%20US%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Weiming%22%2C%22lastName%22%3A%22Hu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mohammadvaghef%22%2C%22lastName%22%3A%22Ghazvinian%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22William%20E.%22%2C%22lastName%22%3A%22Chapman%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Agniv%22%2C%22lastName%22%3A%22Sengupta%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Fred%20Martin%22%2C%22lastName%22%3A%22Ralph%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Luca%22%2C%22lastName%22%3A%22Delle%20Monache%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Reliably%20quantifying%20uncertainty%20in%20precipitation%20forecasts%20remains%20a%20critical%20challenge.%20This%20work%20examines%20the%20application%20of%20a%20Deep%20Learning%20%28DL%29%20architecture%2C%20Unet%2C%20for%20post-processing%20deterministic%20numerical%20weather%20predictions%20of%20precipitation%20to%20improve%20their%20skills%20and%20deriving%20forecast%20uncertainty.%20Daily%20accumulated%200-5-day%20precipitation%20forecasts%20are%20generated%20from%20a%2034-year%20reforecast%20based%20on%20the%20West%20Weather%20Research%20and%20Forecasting%20%28West-WRF%29%20mesoscale%20model%2C%20developed%20by%20the%20Center%20for%20Western%20Weather%20and%20Water%20Extremes.%20The%20Unet%20learns%20the%20distributional%20parameters%20associated%20with%20a%20censored%2C%20shifted%20Gamma%20distribution.%20In%20addition%2C%20the%20DL%20framework%20is%20tested%20against%20state-of-the-art%20benchmark%20methods%2C%20including%20an%20Analog%20Ensemble%2C%20non-homogeneous%20regression%2C%20and%20mixed-type%20meta-Gaussian%20distribution.%20These%20methods%20are%20evaluated%20over%20four%20years%20of%20data%20and%20the%20Western%20US.%20The%20Unet%20outperforms%20the%20benchmark%20methods%20at%20all%20lead%20times%20as%20measured%20by%20continuous%20ranked%20probability%20and%20Brier%20skill%20scores.%20The%20Unet%20also%20produces%20a%20reliable%20estimation%20of%20forecast%20uncertainty%2C%20as%20measured%20by%20binned%20spread-skill%20relationship%20diagrams.%20Additionally%2C%20the%20Unet%20has%20the%20best%20performance%20for%20extreme%20events%2C%20i.e.%2C%20the%2095-th%20and%2099-th%20percentiles%20of%20the%20distribution%2C%20and%20for%20these%20cases%2C%20its%20performance%20improves%20as%20more%20training%20data%20are%20available.%22%2C%22date%22%3A%222023-03-08%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1175%5C%2FMWR-D-22-0268.1%22%2C%22ISSN%22%3A%220027-0644%2C%201520-0493%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fjournals.ametsoc.org%5C%2Fview%5C%2Fjournals%5C%2Fmwre%5C%2Faop%5C%2FMWR-D-22-0268.1%5C%2FMWR-D-22-0268.1.xml%22%2C%22collections%22%3A%5B%223BVIFSK4%22%2C%22GS9TJSRH%22%2C%225VS4ETHR%22%5D%2C%22dateModified%22%3A%222023-09-14T18%3A57%3A30Z%22%7D%7D%2C%7B%22key%22%3A%22WZBXUZUL%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Guan%20et%20al.%22%2C%22parsedDate%22%3A%222023-02-16%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EGuan%2C%20B.%2C%20Waliser%2C%20D.%20E.%2C%20%26amp%3B%20%3Cstrong%3ERalph%3C%5C%2Fstrong%3E%2C%20F.%20M.%20%282023%29.%20Global%20Application%20of%20the%20Atmospheric%20River%20Scale.%20%3Ci%3EJournal%20of%20Geophysical%20Research%3A%20Atmospheres%3C%5C%2Fi%3E%2C%20%3Ci%3E128%3C%5C%2Fi%3E%283%29%2C%20e2022JD037180.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2022JD037180%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2022JD037180%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Global%20Application%20of%20the%20Atmospheric%20River%20Scale%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bin%22%2C%22lastName%22%3A%22Guan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Duane%20E.%22%2C%22lastName%22%3A%22Waliser%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%20Martin%22%2C%22lastName%22%3A%22Ralph%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Atmospheric%20rivers%20%28ARs%29%20are%20narrow%2C%20elongated%2C%20transient%20corridors%20of%20enhanced%20water%20vapor%20transport%20that%20play%20important%20roles%20in%20the%20global%20water%20cycle.%20Increasing%20scientific%20and%20societal%20interests%20in%20ARs%20prompted%20the%20introduction%20of%20an%20AR%20scale%20%28ranks%201%5Cu20135%2C%20from%20weak%20to%20strong%29%20initially%20focused%20on%20western%20North%20America.%20Aided%20by%20a%20global%20AR%20detection%20algorithm%2C%20the%20current%20study%20explores%20the%20insights%20the%20AR%20scale%20can%20help%20provide%20from%20a%20global%20perspective.%20It%20is%20found%20that%20AR%20event%20count%20is%20inversely%20related%20to%20AR%20rank%20and%20peaks%20in%20midlatitude%20oceans.%20Out%20of%20all%20precipitation%20occurrences%2C%20ARs%20account%20for%20an%20increasing%20fraction%20as%20the%20precipitation%20intensity%20considered%20increases.%20Over%20the%20oceans%2C%20this%20fraction%20is%20composed%20of%20comparable%20contributions%20from%20the%20five%20AR%20ranks%2C%20but%20the%20contribution%20of%20AR%205%20is%20much%20smaller%20over%20land.%20Higher%5Cu2010ranked%20ARs%20tend%20to%20initiate%20at%20lower%20latitudes%2C%20terminate%20at%20higher%20latitudes%2C%20but%20follow%20a%20less%20sloped%20track%20due%20to%20longer%20zonal%20displacement.%20Sensitivity%20analysis%20indicates%20that%20if%20ARs%20are%20defined%20using%20a%20sole%20IVT%20threshold%20of%20250%5Cu00a0kg%5Cu00a0m%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu22121%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20s%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu22121%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20globally%20but%20with%20the%20tropics%20excluded%2C%20the%20spatiotemporal%20patterns%20of%20key%20AR%20event%20characteristics%20are%20largely%20similar%20to%20those%20described%20above%2C%20except%20AR%20events%20are%20more%20frequent%20by%20a%20factor%20of%20%5Cu223c1.5%5Cu20132%20depending%20on%20the%20AR%20rank.%20The%20results%20demonstrate%20the%20potential%20of%20the%20AR%20scale%20in%20helping%20evaluate%20and%20communicate%20ARs%27%20influences%20globally%2C%20where%20the%20uniform%20scaling%20facilitates%20intercomparisons%20across%20different%20regions%20and%20the%20perception%20of%20impacts%20can%20be%20adjusted%20according%20to%20local%20climatology.%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Plain%20Language%20Summary%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Atmospheric%20rivers%20%28ARs%29%20are%20%5Cu201crivers%20in%20the%20sky%5Cu201d%20that%20carry%20a%20huge%20amount%20of%20water%20vapor.%20Regarded%20as%20the%20west%20coast%20equivalent%20of%20hurricanes%2C%20they%20are%20major%20precipitation%20deliverers%2C%20flood%20producers%2C%20and%20drought%20busters%20in%20the%20semi%5Cu2010arid%20western%20United%20States.%20The%20footprints%20and%20impacts%20of%20ARs%20in%20other%20regions%20across%20the%20world%20are%20also%20starting%20to%20get%20recognized.%20An%20AR%20scale%20of%20ranks%201%5Cu20135%2C%20in%20analogy%20to%20the%20hurricane%20scale%2C%20has%20recently%20been%20introduced%20for%20the%20western%20North%20America%20to%20help%20communicate%20the%20potential%20strength%20and%20impact%20of%20landfalling%20ARs.%20Aided%20by%20a%20method%20that%20enables%20automated%20detection%20of%20ARs%20globally%2C%20the%20current%20study%20explores%20the%20utility%20of%20the%20AR%20scale%20from%20a%20global%20perspective.%20It%20is%20found%20that%20ARs%20most%20frequently%20occur%20over%20midlatitude%20oceans%2C%20and%20higher%5Cu2010ranked%20ARs%20occur%20less%20frequently%20than%20lower%5Cu2010ranked%20ARs.%20Higher%5Cu2010ranked%20ARs%20tend%20to%20begin%20their%20life%20cycle%20closer%20to%20the%20tropics%20and%20end%20in%20colder%20regions.%20The%20results%20illustrate%20the%20opportunity%20and%20potential%20usefulness%20to%20adopt%20a%20globally%20uniform%20scaling%20for%20ARs%20to%20facilitate%20intercomparisons%20in%20an%20era%20of%20instant%20and%20global%20communication%20capabilities.%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Key%20Points%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20The%20utility%20of%20the%20atmospheric%20river%20%28AR%29%20scale%20is%20explored%20with%20a%20global%20perspective%2C%20aided%20by%20a%20global%20AR%20detection%20algorithm%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Spatial%20distributions%2C%20year%5Cu2010to%5Cu2010year%20variations%2C%20and%20life%20cycle%20characteristics%20associated%20with%20each%20AR%20rank%20are%20examined%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Sensitivity%20of%20the%20results%20is%20investigated%20with%20respect%20to%20AR%20detection%20method%20and%20reanalysis%20product%20used%22%2C%22date%22%3A%222023-02-16%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1029%5C%2F2022JD037180%22%2C%22ISSN%22%3A%222169-897X%2C%202169-8996%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fagupubs.onlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1029%5C%2F2022JD037180%22%2C%22collections%22%3A%5B%223BVIFSK4%22%5D%2C%22dateModified%22%3A%222023-10-24T23%3A01%3A54Z%22%7D%7D%2C%7B%22key%22%3A%22USELMMMZ%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Badrinath%20et%20al.%22%2C%22parsedDate%22%3A%222023-02-08%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EBadrinath%2C%20A.%2C%20Delle%20Monache%2C%20L.%2C%20Hayatbini%2C%20N.%2C%20Chapman%2C%20W.%2C%20Cannon%2C%20F.%2C%20%26amp%3B%20%3Cstrong%3ERalph%3C%5C%2Fstrong%3E%2C%20M.%20%282023%29.%20Improving%20Precipitation%20Forecasts%20with%20Convolutional%20Neural%20Networks.%20%3Ci%3EWeather%20and%20Forecasting%3C%5C%2Fi%3E.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1175%5C%2FWAF-D-22-0002.1%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1175%5C%2FWAF-D-22-0002.1%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Improving%20Precipitation%20Forecasts%20with%20Convolutional%20Neural%20Networks%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Anirudhan%22%2C%22lastName%22%3A%22Badrinath%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Luca%22%2C%22lastName%22%3A%22Delle%20Monache%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Negin%22%2C%22lastName%22%3A%22Hayatbini%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Will%22%2C%22lastName%22%3A%22Chapman%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Forest%22%2C%22lastName%22%3A%22Cannon%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Marty%22%2C%22lastName%22%3A%22Ralph%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20A%20machine%20learning%20method%20based%20on%20spatial%20convolution%20to%20capture%20complex%20spatial%20precipitation%20patterns%20is%20proposed%20to%20identify%20and%20reduce%20biases%20affecting%20predictions%20of%20a%20dynamical%20model.%20The%20method%20is%20based%20on%20a%20combination%20of%20a%20classification%20and%20dual%20regression%20model%20approach%20using%20modified%20U-Net%20convolutional%20neural%20networks%20%28CNN%29%20to%20post-process%20daily%20accumulated%20precipitation%20over%20the%20US%20west%20coast.%20In%20this%20study%2C%20we%20leverage%2034%20years%20of%20high%20resolution%20deterministic%20Western%20Weather%20Research%20and%20Forecasting%20%28West-WRF%29%20precipitation%20reforecasts%20as%20training%20data%20for%20the%20U-Net%20CNN.%20The%20data%20is%20split%20such%20that%20the%20test%20set%20contains%204%20water%20years%20of%20data%20that%20encompass%20characteristic%20west%20coast%20precipitation%20regimes%3A%20El%20Ni%5Cu00f1o%2C%20La%20Ni%5Cu00f1a%2C%20and%20dry%20and%20wet%20El%20Ni%5Cu00f1o%5C%2FSouthern%20Oscillation%20%28ENSO-neutral%29%20water%20years.%20On%20the%20unseen%204-year%20data%20set%2C%20the%20trained%20CNN%20yields%20a%2012.9-15.9%25%20reduction%20in%20root%20mean%20square%20error%20%28RMSE%29%20and%202.7-3.4%25%20improvement%20in%20Pearson%20correlation%20%28PC%29%20over%20West-WRF%20for%20lead%20times%20of%201-4%20days.%20Compared%20to%20an%20adapted%20model%20output%20statistics%20correction%2C%20the%20CNN%20reduces%20RMSE%20by%207.4-8.9%25%20and%20improves%20PC%20by%203.3-4.2%25%20across%20all%20events.%20Effectively%2C%20the%20CNN%20adds%20more%20than%20a%20day%20of%20predictive%20skill%20when%20compared%20to%20West-WRF.%20The%20CNN%20outperforms%20the%20other%20methods%20also%20for%20the%20prediction%20of%20extreme%20events%2C%20which%20we%20define%20as%20the%20top%2010%25%20of%20events%20with%20the%20greatest%20average%20daily%20accumulated%20precipitation.%20The%20improvement%20over%20West-WRF%5Cu2019s%20RMSE%5C%2FPC%20for%20these%20events%20is%2019.8-21.0%25%5C%2F4.9-5.5%25%20and%20MOS%5Cu2019s%20RMSE%5C%2FPC%20is%208.8-9.7%25%5C%2F4.2-4.7%25.%20Hence%2C%20the%20proposed%20U-Net%20CNN%20shows%20significantly%20improved%20forecast%20skill%20over%20existing%20methods%2C%20highlighting%20a%20promising%20path%20forward%20for%20improving%20precipitation%20forecasts.%22%2C%22date%22%3A%222023-02-08%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1175%5C%2FWAF-D-22-0002.1%22%2C%22ISSN%22%3A%220882-8156%2C%201520-0434%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fjournals.ametsoc.org%5C%2Fview%5C%2Fjournals%5C%2Fwefo%5C%2Faop%5C%2FWAF-D-22-0002.1%5C%2FWAF-D-22-0002.1.xml%22%2C%22collections%22%3A%5B%223BVIFSK4%22%2C%22GS9TJSRH%22%5D%2C%22dateModified%22%3A%222023-04-11T23%3A34%3A43Z%22%7D%7D%2C%7B%22key%22%3A%22525WR5I5%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22DeHaan%20et%20al.%22%2C%22parsedDate%22%3A%222023%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EDeHaan%2C%20L.%20L.%2C%20Wilson%2C%20A.%20M.%2C%20Kawzenuk%2C%20B.%2C%20Zheng%2C%20M.%2C%20Monache%2C%20L.%20D.%2C%20Wu%2C%20X.%2C%20Lavers%2C%20D.%20A.%2C%20Ingleby%2C%20B.%2C%20Tallapragada%2C%20V.%2C%20Pappenberger%2C%20F.%2C%20%26amp%3B%20%3Cstrong%3ERalph%3C%5C%2Fstrong%3E%2C%20F.%20M.%20%282023%29.%20Impacts%20of%20Dropsonde%20Observations%20on%20Forecasts%20of%20Atmospheric%20Rivers%20and%20Associated%20Precipitation%20in%20the%20NCEP%20GFS%20and%20ECMWF%20IFS%20Models.%20%3Ci%3EWeather%20and%20Forecasting%3C%5C%2Fi%3E%2C%20%3Ci%3E38%3C%5C%2Fi%3E%2812%29%2C%202397%26%23x2013%3B2413.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1175%5C%2FWAF-D-23-0025.1%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1175%5C%2FWAF-D-23-0025.1%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Impacts%20of%20Dropsonde%20Observations%20on%20Forecasts%20of%20Atmospheric%20Rivers%20and%20Associated%20Precipitation%20in%20the%20NCEP%20GFS%20and%20ECMWF%20IFS%20Models%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Laurel%20L.%22%2C%22lastName%22%3A%22DeHaan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Anna%20M.%22%2C%22lastName%22%3A%22Wilson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Brian%22%2C%22lastName%22%3A%22Kawzenuk%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Minghua%22%2C%22lastName%22%3A%22Zheng%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Luca%20Delle%22%2C%22lastName%22%3A%22Monache%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xingren%22%2C%22lastName%22%3A%22Wu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22David%20A.%22%2C%22lastName%22%3A%22Lavers%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Bruce%22%2C%22lastName%22%3A%22Ingleby%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Vijay%22%2C%22lastName%22%3A%22Tallapragada%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Florian%22%2C%22lastName%22%3A%22Pappenberger%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%20Martin%22%2C%22lastName%22%3A%22Ralph%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Atmospheric%20River%20Reconnaissance%20has%20held%20field%20campaigns%20during%20cool%20seasons%20since%202016.%20These%20campaigns%20have%20provided%20thousands%20of%20dropsonde%20data%20profiles%2C%20which%20are%20assimilated%20into%20multiple%20global%20operational%20numerical%20weather%20prediction%20models.%20Data%20denial%20experiments%2C%20conducted%20by%20running%20a%20parallel%20set%20of%20forecasts%20that%20exclude%20the%20dropsonde%20information%2C%20allow%20testing%20of%20the%20impact%20of%20the%20dropsonde%20data%20on%20model%20analyses%20and%20the%20subsequent%20forecasts.%20Here%2C%20we%20investigate%20the%20differences%20in%20skill%20between%20the%20control%20forecasts%20%28with%20dropsonde%20data%20assimilated%29%20and%20denial%20forecasts%20%28without%20dropsonde%20data%20assimilated%29%20in%20terms%20of%20both%20precipitation%20and%20integrated%20vapor%20transport%20%28IVT%29%20at%20multiple%20thresholds.%20The%20differences%20are%20considered%20in%20the%20times%20and%20locations%20where%20there%20is%20a%20reasonable%20expectation%20of%20influence%20of%20an%20intensive%20observation%20period%20%28IOP%29.%20Results%20for%202019%20and%202020%20from%20both%20the%20European%20Centre%20for%20Medium-Range%20Weather%20Forecasts%20%28ECMWF%29%20model%20and%20the%20National%20Centers%20for%20Environmental%20Prediction%20%28NCEP%29%20global%20model%20show%20improvements%20with%20the%20added%20information%20from%20the%20dropsondes.%20In%20particular%2C%20significant%20improvements%20in%20the%20control%20forecast%20IVT%20generally%20occur%20in%20both%20models%2C%20especially%20at%20higher%20values.%20Significant%20improvements%20in%20the%20control%20forecast%20precipitation%20also%20generally%20occur%20in%20both%20models%2C%20but%20the%20improvements%20vary%20depending%20on%20the%20lead%20time%20and%20metrics%20used.%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Significance%20Statement%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Atmospheric%20River%20Reconnaissance%20is%20a%20program%20that%20uses%20targeted%20aircraft%20flights%20over%20the%20northeast%20Pacific%20to%20take%20measurements%20of%20meteorological%20fields.%20These%20data%20are%20then%20ingested%20into%20global%20weather%20models%20with%20the%20intent%20of%20improving%20the%20initial%20conditions%20and%20resulting%20forecasts%20along%20the%20U.S.%20West%20Coast.%20The%20impacts%20of%20these%20observations%20on%20two%20global%20numerical%20weather%20models%20were%20investigated%20to%20determine%20their%20influence%20on%20the%20forecasts.%20The%20integrated%20vapor%20transport%2C%20a%20measure%20of%20both%20wind%20and%20humidity%2C%20saw%20significant%20improvements%20in%20both%20models%20with%20the%20additional%20observations.%20Precipitation%20forecasts%20were%20also%20improved%2C%20but%20with%20differing%20results%20between%20the%20two%20models.%22%2C%22date%22%3A%2212%5C%2F2023%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1175%5C%2FWAF-D-23-0025.1%22%2C%22ISSN%22%3A%220882-8156%2C%201520-0434%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fjournals.ametsoc.org%5C%2Fview%5C%2Fjournals%5C%2Fwefo%5C%2F38%5C%2F12%5C%2FWAF-D-23-0025.1.xml%22%2C%22collections%22%3A%5B%22H3FG68WV%22%2C%223BVIFSK4%22%2C%22GS9TJSRH%22%5D%2C%22dateModified%22%3A%222023-12-20T00%3A31%3A14Z%22%7D%7D%2C%7B%22key%22%3A%22JDJ9T8N5%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Cobb%20et%20al.%22%2C%22parsedDate%22%3A%222023%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ECobb%2C%20A.%2C%20Steinhoff%2C%20D.%2C%20Weihs%2C%20R.%2C%20Delle%20Monache%2C%20L.%2C%20DeHaan%2C%20L.%2C%20Reynolds%2C%20D.%2C%20Cannon%2C%20F.%2C%20Kawzenuk%2C%20B.%2C%20Papadopolous%2C%20C.%2C%20%26amp%3B%20%3Cstrong%3ERalph%3C%5C%2Fstrong%3E%2C%20F.%20M.%20%282023%29.%20West-WRF%2034-Year%20Reforecast%3A%20Description%20and%20Validation.%20%3Ci%3EJournal%20of%20Hydrometeorology%3C%5C%2Fi%3E%2C%20%3Ci%3E24%3C%5C%2Fi%3E%2811%29%2C%202125%26%23x2013%3B2140.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1175%5C%2FJHM-D-22-0235.1%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1175%5C%2FJHM-D-22-0235.1%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22West-WRF%2034-Year%20Reforecast%3A%20Description%20and%20Validation%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alison%22%2C%22lastName%22%3A%22Cobb%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Daniel%22%2C%22lastName%22%3A%22Steinhoff%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Rachel%22%2C%22lastName%22%3A%22Weihs%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Luca%22%2C%22lastName%22%3A%22Delle%20Monache%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Laurel%22%2C%22lastName%22%3A%22DeHaan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22David%22%2C%22lastName%22%3A%22Reynolds%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Forest%22%2C%22lastName%22%3A%22Cannon%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Brian%22%2C%22lastName%22%3A%22Kawzenuk%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Caroline%22%2C%22lastName%22%3A%22Papadopolous%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%20M.%22%2C%22lastName%22%3A%22Ralph%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20This%20study%20presents%20a%20high-resolution%20regional%20reforecast%20based%20on%20the%20Weather%20Research%20and%20Forecasting%20%28WRF%29%20Model%2C%20tailored%20for%20the%20prediction%20of%20extreme%20hydrometeorological%20events%20over%20the%20western%20United%20States%20%28West-WRF%29%20spanning%2034%20cool%20seasons%20%281%20December%5Cu201331%20March%29%20from%201986%20to%202019.%20The%20West-WRF%20reforecast%20has%20a%209-km%20domain%20covering%20western%20North%20America%20and%20the%20eastern%20Pacific%20Ocean%20and%20a%203-km%20domain%20covering%20much%20of%20California.%20The%20West-WRF%20reforecast%20is%20generated%20by%20dynamically%20downscaling%20the%20control%20member%20of%20the%20Global%20Ensemble%20Forecasting%20System%20%28GEFS%29%20v10%20reforecast.%20Verification%20of%20near-surface%20temperature%2C%20wind%2C%20and%20humidity%20highlight%20the%20added%20value%20in%20the%20reforecast%20relative%20to%20GEFS.%20Analysis%20of%20geopotential%20height%20indicates%20that%20West-WRF%20reduces%20the%20bias%20throughout%20much%20of%20the%20troposphere%20during%20early%20lead%20times.%20The%20West-WRF%20reforecast%20also%20shows%20clear%20improvement%20in%20atmospheric%20river%20characteristics%20%28intensity%20and%20landfall%29%20over%20GEFS.%20Analysis%20of%20mean%20areal%20precipitation%20%28MAP%29%20shows%20that%20at%20the%20basin%20scale%2C%20the%20reforecast%20can%20improve%20MAP%20relative%20to%20GEFS%20and%20reveals%20a%20consistent%20low%20bias%20in%20the%20reforecast%20for%20a%20coastal%20watershed%20%28Russian%29%20and%20a%20high%20bias%20observed%20in%20a%20Northern%20Sierra%20watershed%20%28Yuba%29.%20The%20reforecast%20has%20a%20dry%20bias%20in%20seasonal%20precipitation%20in%20the%20northern%20Central%20Valley%20and%20Coast%20Mountain%20ranges%2C%20and%20a%20wet%20bias%20in%20the%20Northern%20Sierra%20Nevada%2C%20consistent%20with%20other%20operational%20high-resolution%20%28%3C25%20km%29%20regional%20models.%20The%20applications%20of%20this%20high-resolution%20multiyear%20reforecast%20include%20process-based%20studies%2C%20assessment%20of%20model%20performance%2C%20and%20machine%20learning%20applications.%22%2C%22date%22%3A%2211%5C%2F2023%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1175%5C%2FJHM-D-22-0235.1%22%2C%22ISSN%22%3A%221525-755X%2C%201525-7541%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fjournals.ametsoc.org%5C%2Fview%5C%2Fjournals%5C%2Fhydr%5C%2F24%5C%2F11%5C%2FJHM-D-22-0235.1.xml%22%2C%22collections%22%3A%5B%223BVIFSK4%22%2C%22GS9TJSRH%22%2C%22ZMF9SIZP%22%5D%2C%22dateModified%22%3A%222023-12-01T23%3A05%3A34Z%22%7D%7D%2C%7B%22key%22%3A%228YIYETXC%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Lord%20et%20al.%22%2C%22parsedDate%22%3A%222023%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ELord%2C%20S.%20J.%2C%20Wu%2C%20X.%2C%20Tallapragada%2C%20V.%2C%20%26amp%3B%20%3Cstrong%3ERalph%3C%5C%2Fstrong%3E%2C%20F.%20M.%20%282023%29.%20The%20Impact%20of%20Dropsonde%20Data%20on%20the%20Performance%20of%20the%20NCEP%20Global%20Forecast%20System%20during%20the%202020%20Atmospheric%20Rivers%20Observing%20Campaign.%20Part%20II%3A%20Dynamic%20Variables%20and%20Humidity.%20%3Ci%3EWeather%20and%20Forecasting%3C%5C%2Fi%3E%2C%20%3Ci%3E38%3C%5C%2Fi%3E%285%29%2C%20721%26%23x2013%3B752.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1175%5C%2FWAF-D-22-0072.1%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1175%5C%2FWAF-D-22-0072.1%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22The%20Impact%20of%20Dropsonde%20Data%20on%20the%20Performance%20of%20the%20NCEP%20Global%20Forecast%20System%20during%20the%202020%20Atmospheric%20Rivers%20Observing%20Campaign.%20Part%20II%3A%20Dynamic%20Variables%20and%20Humidity%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Stephen%20J.%22%2C%22lastName%22%3A%22Lord%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xingren%22%2C%22lastName%22%3A%22Wu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Vijay%22%2C%22lastName%22%3A%22Tallapragada%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%20M.%22%2C%22lastName%22%3A%22Ralph%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20The%20impact%20of%20assimilating%20dropsonde%20data%20from%20the%202020%20Atmospheric%20River%20%28AR%29%20Reconnaissance%20%28ARR%29%20field%20campaign%20on%20operational%20numerical%20weather%20forecasts%20was%20assessed.%20Two%20experiments%20were%20executed%20for%20the%20period%20from%2024%20January%20to%2018%20March%202020%20using%20the%20National%20Centers%20for%20Environmental%20Prediction%20%28NCEP%29%20Global%20Forecast%20System%20version%2015%20%28GFSv15%29%20with%20a%20four-dimensional%20hybrid%20ensemble%5Cu2013variational%20%284DEnVar%29%20data%20assimilation%20system.%20The%20control%20run%20%28CTRL%29%20used%20all%20of%20the%20routinely%20assimilated%20data%20and%20included%20data%20from%20628%20ARR%20dropsondes%2C%20whereas%20the%20denial%20run%20%28DENY%29%20excluded%20the%20dropsonde%20data.%20Results%20from%2017%20intensive%20observing%20periods%20%28IOPs%29%20indicate%20a%20mixed%20impact%20for%20mean%20sea%20level%20pressure%20and%20geopotential%20height%20over%20the%20Pacific%5Cu2013North%20American%20%28PNA%29%20region%20in%20CTRL%20compared%20to%20DENY.%20The%20overall%20local%20impact%20over%20the%20U.S.%20West%20Coast%20and%20Gulf%20of%20Alaska%20for%20the%2017%20IOPs%20is%20neutral%20%28%5Cu22120.45%25%29%20for%20integrated%20vapor%20transport%20%28IVT%29%2C%20but%20positive%20for%20wind%20and%20moisture%20profiles%20%280.5%25%5Cu20131.0%25%29%2C%20with%20a%20spectrum%20of%20statistically%20significant%20positive%20and%20negative%20impacts%20for%20various%20IOPs.%20The%20positive%20dropsonde%20data%20impact%20on%20precipitation%20forecasts%20over%20U.S.%20West%20Coast%20domains%20appears%20driven%2C%20in%20part%2C%20by%20improved%20low-level%20moisture%20and%20wind%20fields%20at%20short-forecast%20lead%20times.%20Indeed%2C%20data%20gaps%2C%20especially%20for%20accurate%20and%20unbiased%20moisture%20profiles%20and%20wind%20fields%2C%20can%20be%20at%20least%20partially%20mitigated%20to%20improve%20U.S.%20West%20Coast%20precipitation%20forecasts.%22%2C%22date%22%3A%2205%5C%2F2023%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1175%5C%2FWAF-D-22-0072.1%22%2C%22ISSN%22%3A%220882-8156%2C%201520-0434%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fjournals.ametsoc.org%5C%2Fview%5C%2Fjournals%5C%2Fwefo%5C%2F38%5C%2F5%5C%2FWAF-D-22-0072.1.xml%22%2C%22collections%22%3A%5B%223BVIFSK4%22%5D%2C%22dateModified%22%3A%222023-07-17T22%3A42%3A30Z%22%7D%7D%2C%7B%22key%22%3A%22JX4MBY8C%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Howard%20et%20al.%22%2C%22parsedDate%22%3A%222023%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EHoward%2C%20I.%20M.%2C%20Stahle%2C%20D.%20W.%2C%20Dettinger%2C%20M.%20D.%2C%20Poulsen%2C%20C.%2C%20%3Cstrong%3ERalph%3C%5C%2Fstrong%3E%2C%20F.%20M.%2C%20Torbenson%2C%20M.%20C.%20A.%2C%20%26amp%3B%20Gershunov%2C%20A.%20%282023%29.%20A%20440-Year%20Reconstruction%20of%20Heavy%20Precipitation%20in%20California%20from%20Blue%20Oak%20Tree%20Rings.%20%3Ci%3EJournal%20of%20Hydrometeorology%3C%5C%2Fi%3E%2C%20%3Ci%3E24%3C%5C%2Fi%3E%283%29%2C%20463%26%23x2013%3B477.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1175%5C%2FJHM-D-22-0062.1%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1175%5C%2FJHM-D-22-0062.1%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22A%20440-Year%20Reconstruction%20of%20Heavy%20Precipitation%20in%20California%20from%20Blue%20Oak%20Tree%20Rings%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ian%20M.%22%2C%22lastName%22%3A%22Howard%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22David%20W.%22%2C%22lastName%22%3A%22Stahle%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Michael%20D.%22%2C%22lastName%22%3A%22Dettinger%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Cody%22%2C%22lastName%22%3A%22Poulsen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%20Martin%22%2C%22lastName%22%3A%22Ralph%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Max%20C.%20A.%22%2C%22lastName%22%3A%22Torbenson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alexander%22%2C%22lastName%22%3A%22Gershunov%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20The%20variability%20of%20water%20year%20precipitation%20and%20selected%20blue%20oak%20tree-ring%20chronologies%20in%20California%20are%20both%20dominated%20by%20heavy%20precipitation%20delivered%20during%20just%20a%20few%20days%20each%20year.%20These%20heavy%20precipitation%20events%20can%20spell%20the%20difference%20between%20surplus%20or%20deficit%20water%20supply%20and%20elevated%20flood%20risk.%20Some%20blue%20oak%20chronologies%20are%20highly%20correlated%20with%20water%20year%20precipitation%20%28%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20r%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%3D%200.84%29%20but%20are%20equally%20well%20correlated%20%28%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20r%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%3D%200.82%29%20with%20heavy%20precipitation%20totals%20%5Cu226525.4%20mm%20%281%20in.%2C%20%5Cu224895th%20percentile%20of%20daily%20totals%2C%201949%5Cu20132004%29.%20The%20blue%20oak%20correlation%20with%20nonheavy%20daily%20totals%20is%20much%20weaker%20%28%3C25.4%20mm%3B%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20r%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%3D%200.55%29.%20Consequently%2C%20some%20blue%20oak%20chronologies%20represent%20selective%20proxies%20for%20the%20temporal%20and%20spatial%20variability%20of%20heavy%20precipitation%20totals%20and%20are%20used%20to%20reconstruct%20the%20amount%20and%20number%20of%20days%20with%20heavy%20precipitation%20in%20northern%20California%20from%201582%20to%202021.%20Instrumental%20and%20reconstructed%20heavy%20precipitation%20totals%20are%20strongly%20correlated%20with%20gridded%20atmospheric%20river%5Cu2013related%20precipitation%20over%20the%20western%20United%20States%2C%20especially%20in%20central%20California.%20Spectral%20analysis%20indicates%20that%20instrumental%20heavy%20precipitation%20totals%20may%20be%20dominated%20by%20high-frequency%20variability%20and%20the%20nonheavy%20totals%20by%20low-frequency%20variance.%20The%20reconstruction%20of%20heavy%20precipitation%20is%20coherent%20with%20instrumental%20heavy%20totals%20across%20the%20frequency%20domain%20and%20include%20concentrations%20of%20variance%20at%20ENSO%20and%20biennial%20frequencies.%20Return%20period%20analyses%20calculated%20using%20instrumental%20heavy%20precipitation%20totals%20are%20representative%20of%20the%20return%20periods%20in%20the%20blue%20oak%20reconstruction%20despite%20the%20large%20differences%20in%20series%20length.%20Decadal%20surges%20in%20the%20amount%2C%20frequency%2C%20and%20interannual%20volatility%20of%20heavy%20precipitation%20totals%20are%20reconstructed%2C%20likely%20reflecting%20episodes%20of%20elevated%20atmospheric%20river%20activity%20in%20the%20past.%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Significance%20Statement%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Tree-ring%20chronologies%20of%20blue%20oak%20are%20highly%20correlated%20with%20precipitation%20delivered%20to%20northern%20California%20during%20just%20the%20heaviest%20days%20of%20precipitation%20each%20year.%20The%20reconstruction%20of%20heavy%20precipitation%20indicates%20decadal%20episodes%20with%20a%20high%20frequency%20of%20extreme%20precipitation.%20These%20episodes%20of%20frequent%20heavy%20precipitation%20likely%20arose%20because%20of%20elevated%20atmospheric%20river%20activity%20and%20are%20relevant%20to%20the%20analysis%20of%20water%20supply%20and%20flood%20hazard%20in%20California.%22%2C%22date%22%3A%2203%5C%2F2023%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1175%5C%2FJHM-D-22-0062.1%22%2C%22ISSN%22%3A%221525-755X%2C%201525-7541%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fjournals.ametsoc.org%5C%2Fview%5C%2Fjournals%5C%2Fhydr%5C%2F24%5C%2F3%5C%2FJHM-D-22-0062.1.xml%22%2C%22collections%22%3A%5B%223BVIFSK4%22%2C%227J6PFJNF%22%5D%2C%22dateModified%22%3A%222023-04-07T20%3A16%3A23Z%22%7D%7D%2C%7B%22key%22%3A%22LH7N7K5B%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Lord%20et%20al.%22%2C%22parsedDate%22%3A%222023%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ELord%2C%20S.%20J.%2C%20Wu%2C%20X.%2C%20Tallapragada%2C%20V.%2C%20%26amp%3B%20%3Cstrong%3ERalph%3C%5C%2Fstrong%3E%2C%20F.%20M.%20%282023%29.%20The%20Impact%20of%20Dropsonde%20Data%20on%20the%20Performance%20of%20the%20NCEP%20Global%20Forecast%20System%20during%20the%202020%20Atmospheric%20Rivers%20Observing%20Campaign.%20Part%20I%3A%20Precipitation.%20%3Ci%3EWeather%20and%20Forecasting%3C%5C%2Fi%3E%2C%20%3Ci%3E38%3C%5C%2Fi%3E%281%29%2C%2017%26%23x2013%3B45.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1175%5C%2FWAF-D-22-0036.1%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1175%5C%2FWAF-D-22-0036.1%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22The%20Impact%20of%20Dropsonde%20Data%20on%20the%20Performance%20of%20the%20NCEP%20Global%20Forecast%20System%20during%20the%202020%20Atmospheric%20Rivers%20Observing%20Campaign.%20Part%20I%3A%20Precipitation%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Stephen%20J.%22%2C%22lastName%22%3A%22Lord%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xingren%22%2C%22lastName%22%3A%22Wu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Vijay%22%2C%22lastName%22%3A%22Tallapragada%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%20M.%22%2C%22lastName%22%3A%22Ralph%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20The%20impact%20of%20assimilating%20dropsonde%20data%20from%20the%202020%20Atmospheric%20River%20%28AR%29%20Reconnaissance%20%28ARR%29%20field%20campaign%20on%20operational%20numerical%20precipitation%20forecasts%20was%20assessed.%20Two%20experiments%20were%20executed%20for%20the%20period%20from%2024%20January%20to%2018%20March%202020%20using%20the%20NCEP%20Global%20Forecast%20System%2C%20version%2015%20%28GFSv15%29%2C%20with%20a%20four-dimensional%20hybrid%20ensemble%5Cu2013variational%20%284DEnVar%29%20data%20assimilation%20system.%20The%20control%20run%20%28CTRL%29%20used%20all%20the%20routinely%20assimilated%20data%20and%20included%20ARR%20dropsonde%20data%2C%20whereas%20the%20denial%20run%20%28DENY%29%20excluded%20the%20dropsonde%20data.%20There%20were%2017%20intensive%20observing%20periods%20%28IOPs%29%20totaling%2046%20Air%20Force%20C-130%20and%2016%20NOAA%20G-IV%20missions%20to%20deploy%20dropsondes%20over%20targeted%20regions%20with%20potential%20for%20downstream%20high-impact%20weather%20associated%20with%20the%20ARs.%20Data%20from%20a%20total%20of%20628%20dropsondes%20were%20assimilated%20in%20the%20CTRL.%20The%20dropsonde%20data%20impact%20on%20precipitation%20forecasts%20over%20U.S.%20West%20Coast%20domains%20is%20largely%20positive%2C%20especially%20for%20day-5%20lead%20time%2C%20and%20appears%20driven%20by%20different%20model%20variables%20on%20a%20case-by-case%20basis.%20These%20results%20suggest%20that%20data%20gaps%20associated%20with%20ARs%20can%20be%20addressed%20with%20targeted%20ARR%20field%20campaigns%20providing%20vital%20observations%20needed%20for%20improving%20U.S.%20West%20Coast%20precipitation%20forecasts.%22%2C%22date%22%3A%2201%5C%2F2023%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1175%5C%2FWAF-D-22-0036.1%22%2C%22ISSN%22%3A%220882-8156%2C%201520-0434%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fjournals.ametsoc.org%5C%2Fview%5C%2Fjournals%5C%2Fwefo%5C%2F38%5C%2F1%5C%2FWAF-D-22-0036.1.xml%22%2C%22collections%22%3A%5B%223BVIFSK4%22%5D%2C%22dateModified%22%3A%222023-03-20T15%3A51%3A14Z%22%7D%7D%2C%7B%22key%22%3A%225J4EA3AP%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Reynolds%20et%20al.%22%2C%22parsedDate%22%3A%222023%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EReynolds%2C%20C.%20A.%2C%20Stone%2C%20R.%20E.%2C%20Doyle%2C%20J.%20D.%2C%20Baker%2C%20N.%20L.%2C%20Wilson%2C%20A.%20M.%2C%20%3Cstrong%3ERalph%3C%5C%2Fstrong%3E%2C%20F.%20M.%2C%20Lavers%2C%20D.%20A.%2C%20Subramanian%2C%20A.%20C.%2C%20%26amp%3B%20Centurioni%2C%20L.%20%282023%29.%20Impacts%20of%20Northeastern%20Pacific%20Buoy%20Surface%20Pressure%20Observations.%20%3Ci%3EMonthly%20Weather%20Review%3C%5C%2Fi%3E%2C%20%3Ci%3E151%3C%5C%2Fi%3E%281%29%2C%20211%26%23x2013%3B226.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1175%5C%2FMWR-D-22-0124.1%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1175%5C%2FMWR-D-22-0124.1%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Impacts%20of%20Northeastern%20Pacific%20Buoy%20Surface%20Pressure%20Observations%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Carolyn%20A.%22%2C%22lastName%22%3A%22Reynolds%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Rebecca%20E.%22%2C%22lastName%22%3A%22Stone%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22James%20D.%22%2C%22lastName%22%3A%22Doyle%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nancy%20L.%22%2C%22lastName%22%3A%22Baker%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Anna%20M.%22%2C%22lastName%22%3A%22Wilson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%20Martin%22%2C%22lastName%22%3A%22Ralph%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22David%20A.%22%2C%22lastName%22%3A%22Lavers%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Aneesh%20C.%22%2C%22lastName%22%3A%22Subramanian%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Luca%22%2C%22lastName%22%3A%22Centurioni%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Under%20the%20Atmospheric%20River%20Reconnaissance%20%28AR%20Recon%29%20Program%2C%20ocean%20drifting%20buoys%20%28drifters%29%20that%20provide%20surface%20pressure%20observations%20were%20deployed%20in%20the%20northeastern%20Pacific%20Ocean%20to%20improve%20forecasts%20of%20U.S.%20West%20Coast%20high-impact%20weather.%20We%20examine%20the%20impacts%20of%20both%20AR%20Recon%20and%20non-AR%20Recon%20drifter%20observations%20in%20the%20U.S.%20Navy%5Cu2019s%20global%20atmospheric%20data%20assimilation%20%28DA%29%20and%20forecast%20system%20using%20data-denial%20experiments%20and%20forecast%20sensitivity%20observation%20impact%20%28FSOI%29%20analysis%2C%20which%20estimates%20the%20impact%20of%20each%20observation%20on%20the%2024-h%20global%20forecast%20error%20total%20energy.%20Considering%20all%20drifters%20in%20the%20eastern%20North%20Pacific%20for%20the%202020%20AR%20Recon%20season%2C%20FSOI%20indicates%20that%20most%20of%20the%20beneficial%20impacts%20come%20from%20observations%20in%20the%20lowest%20quartile%20of%20observed%20surface%20pressure%20values%2C%20particularly%20those%20taken%20late%20in%20the%20DA%20window.%20Observations%20in%20the%20upper%20quartile%20have%20near-neutral%20impacts%20on%20average%20and%20are%20slightly%20nonbeneficial%20when%20taken%20late%20in%20the%20DA%20window.%20This%20may%20occur%20because%20the%20DA%20configuration%20used%20here%20does%20not%20account%20for%20model%20biases%2C%20and%20innovation%20statistics%20show%20that%20the%20forecast%20model%20has%20a%20low%20pressure%20bias%20at%20high%20pressures.%20Case%20studies%20and%20other%20analyses%20indicate%20large%20beneficial%20impacts%20coming%20from%20observations%20in%20regions%20with%20large%20surface%20pressure%20gradients%20and%20integrated%20vapor%20transport%2C%20such%20as%20fronts%20and%20ARs.%20Data-denial%20experiments%20indicate%20that%20the%20assimilation%20of%20AR%20Recon%20drifter%20observations%20results%20in%20a%20better-constrained%20analysis%20at%20nearby%20non-AR%20Recon%20drifter%20locations%20and%20counteracts%20the%20NAVGEM%20pressure%20bias.%20Assimilating%20the%20AR%20Recon%20drifter%20observations%20improves%2072-%20and%2096-h%20Northern%20Hemisphere%20forecasts%20of%20winds%20in%20the%20lower%20and%20middle%20troposphere%2C%20and%20geopotential%20height%20in%20the%20lower%2C%20middle%2C%20and%20upper%20troposphere.%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Significance%20Statement%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20The%20purpose%20of%20this%20study%20is%20to%20understand%20how%20observations%20of%20atmospheric%20pressure%20at%20the%20ocean%20surface%20provided%20by%20drifting%20buoys%20impact%20weather%20forecasts.%20Some%20of%20these%20drifting%20buoys%20were%20deployed%20under%20a%20program%20to%20study%20atmospheric%20rivers%20%28ARs%29%20to%20improve%20forecasts%20of%20high-impact%20weather%20on%20the%20West%20Coast.%20We%20find%20that%20these%20observations%20are%20most%20effective%20at%20reducing%20forecast%20errors%20when%20taken%20in%20regions%20near%20fronts%20and%20cyclones.%20The%20additional%20drifting%20buoys%20deployed%20under%20the%20AR%20Reconnaissance%20project%20reduce%20forecast%20errors%20at%2072%20and%2096%20h%20over%20North%20America%20and%20the%20Northern%20Hemisphere.%20These%20results%20are%20important%20because%20they%20illustrate%20the%20potential%20for%20improving%20forecasts%20by%20increasing%20the%20number%20of%20drifting%20buoy%20surface%20pressure%20observations%20over%20the%20world%20oceans.%22%2C%22date%22%3A%2201%5C%2F2023%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1175%5C%2FMWR-D-22-0124.1%22%2C%22ISSN%22%3A%220027-0644%2C%201520-0493%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fjournals.ametsoc.org%5C%2Fview%5C%2Fjournals%5C%2Fmwre%5C%2F151%5C%2F1%5C%2FMWR-D-22-0124.1.xml%22%2C%22collections%22%3A%5B%22Q4IQ5F7I%22%2C%22H3FG68WV%22%2C%223BVIFSK4%22%5D%2C%22dateModified%22%3A%222023-03-20T15%3A34%3A31Z%22%7D%7D%2C%7B%22key%22%3A%22XSNZXNRL%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Corringham%20et%20al.%22%2C%22parsedDate%22%3A%222022-08-12%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ECorringham%2C%20T.%20W.%2C%20McCarthy%2C%20J.%2C%20Shulgina%2C%20T.%2C%20Gershunov%2C%20A.%2C%20Cayan%2C%20D.%20R.%2C%20%26amp%3B%20%3Cstrong%3ERalph%3C%5C%2Fstrong%3E%2C%20F.%20M.%20%282022%29.%20Climate%20change%20contributions%20to%20future%20atmospheric%20river%20flood%20damages%20in%20the%20western%20United%20States.%20%3Ci%3EScientific%20Reports%3C%5C%2Fi%3E%2C%20%3Ci%3E12%3C%5C%2Fi%3E%281%29%2C%2013747.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41598-022-15474-2%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41598-022-15474-2%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Climate%20change%20contributions%20to%20future%20atmospheric%20river%20flood%20damages%20in%20the%20western%20United%20States%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Thomas%20W.%22%2C%22lastName%22%3A%22Corringham%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22James%22%2C%22lastName%22%3A%22McCarthy%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Tamara%22%2C%22lastName%22%3A%22Shulgina%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alexander%22%2C%22lastName%22%3A%22Gershunov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Daniel%20R.%22%2C%22lastName%22%3A%22Cayan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%20Martin%22%2C%22lastName%22%3A%22Ralph%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Atmospheric%20rivers%20%28ARs%29%20generate%20most%20of%20the%20economic%20losses%20associated%20with%20flooding%20in%20the%20western%20United%20States%20and%20are%20projected%20to%20increase%20in%20intensity%20with%20climate%20change.%20This%20is%20of%20concern%20as%20flood%20damages%20have%20been%20shown%20to%20increase%20exponentially%20with%20AR%20intensity.%20To%20assess%20how%20AR-related%20flood%20damages%20are%20likely%20to%20respond%20to%20climate%20change%2C%20we%20constructed%20county-level%20damage%20models%20for%20the%20western%2011%20conterminous%20states%20using%2040%5Cu00a0years%20of%20flood%20insurance%20data%20linked%20to%20characteristics%20of%20ARs%20at%20landfall.%20Damage%20functions%20were%20applied%20to%2014%20CMIP5%20global%20climate%20models%20under%20the%20RCP4.5%20%5Cu201cintermediate%20emissions%5Cu201d%20and%20RCP8.5%20%5Cu201chigh%20emissions%5Cu201d%20scenarios%2C%20under%20the%20assumption%20that%20spatial%20patterns%20of%20exposure%2C%20vulnerability%2C%20and%20flood%20protection%20remain%20constant%20at%20present%20day%20levels.%20The%20models%20predict%20that%20annual%20expected%20AR-related%20flood%20damages%20in%20the%20western%20United%20States%20could%20increase%20from%20%241%20billion%20in%20the%20historical%20period%20to%20%242.3%20billion%20in%20the%202090s%20under%20the%20RCP4.5%20scenario%20or%20to%20%243.2%20billion%20under%20the%20RCP8.5%20scenario.%20County-level%20projections%20were%20developed%20to%20identify%20counties%20at%20greatest%20risk%2C%20allowing%20policymakers%20to%20target%20efforts%20to%20increase%20resilience%20to%20climate%20change.%22%2C%22date%22%3A%222022-08-12%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1038%5C%2Fs41598-022-15474-2%22%2C%22ISSN%22%3A%222045-2322%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.nature.com%5C%2Farticles%5C%2Fs41598-022-15474-2%22%2C%22collections%22%3A%5B%222CJDBIH8%22%2C%223BVIFSK4%22%2C%227J6PFJNF%22%2C%22P26VLJMP%22%2C%22GMYI6SZ8%22%5D%2C%22dateModified%22%3A%222022-09-19T23%3A04%3A33Z%22%7D%7D%2C%7B%22key%22%3A%22RDSGYLB2%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Guirguis%20et%20al.%22%2C%22parsedDate%22%3A%222022-08%22%2C%22numChildren%22%3A2%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EGuirguis%2C%20K.%2C%20Gershunov%2C%20A.%2C%20Hatchett%2C%20B.%2C%20Shulgina%2C%20T.%2C%20DeFlorio%2C%20M.%20J.%2C%20Subramanian%2C%20A.%20C.%2C%20Guzman-Morales%2C%20J.%2C%20Aguilera%2C%20R.%2C%20Clemesha%2C%20R.%2C%20Corringham%2C%20T.%20W.%2C%20Delle%20Monache%2C%20L.%2C%20Reynolds%2C%20D.%2C%20Tardy%2C%20A.%2C%20Small%2C%20I.%2C%20%26amp%3B%20%3Cstrong%3ERalph%3C%5C%2Fstrong%3E%2C%20F.%20M.%20%282022%29.%20Winter%20wet-dry%20weather%20patterns%20driving%20atmospheric%20rivers%20and%20Santa%20Ana%20winds%20provide%20evidence%20for%20increasing%20wildfire%20hazard%20in%20California.%20%3Ci%3EClimate%20Dynamics%3C%5C%2Fi%3E%2C%2021.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1007%5C%2Fs00382-022-06361-7%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1007%5C%2Fs00382-022-06361-7%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Winter%20wet-dry%20weather%20patterns%20driving%20atmospheric%20rivers%20and%20Santa%20Ana%20winds%20provide%20evidence%20for%20increasing%20wildfire%20hazard%20in%20California%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22K.%22%2C%22lastName%22%3A%22Guirguis%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Gershunov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%22%2C%22lastName%22%3A%22Hatchett%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22T.%22%2C%22lastName%22%3A%22Shulgina%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%20J.%22%2C%22lastName%22%3A%22DeFlorio%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%20C.%22%2C%22lastName%22%3A%22Subramanian%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%22%2C%22lastName%22%3A%22Guzman-Morales%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R.%22%2C%22lastName%22%3A%22Aguilera%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R.%22%2C%22lastName%22%3A%22Clemesha%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22T.%20W.%22%2C%22lastName%22%3A%22Corringham%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%22%2C%22lastName%22%3A%22Delle%20Monache%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%22%2C%22lastName%22%3A%22Reynolds%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Tardy%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22I.%22%2C%22lastName%22%3A%22Small%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%20M.%22%2C%22lastName%22%3A%22Ralph%22%7D%5D%2C%22abstractNote%22%3A%22Floods%20caused%20by%20atmospheric%20rivers%20and%20wildfires%20fanned%20by%20Santa%20Ana%20winds%20are%20common%20occurrences%20in%20California%20with%20devastating%20societal%20impacts.%20In%20this%20work%2C%20we%20show%20that%20winter%20weather%20variability%20in%20California%2C%20including%20the%20occurrence%20of%20extreme%20and%20impactful%20events%2C%20is%20linked%20to%20four%20atmospheric%20circulation%20regimes%20over%20the%20North%20Pacific%20Ocean%20previously%20named%20and%20identified%20as%20the%20%5C%22NP4%20modes%5C%22.%20These%20modes%20come%20in%20and%20out%20of%20phase%20with%20each%20other%20during%20the%20season%2C%20resulting%20in%20distinct%20weather%20patterns%20that%20recur%20throughout%20the%20historical%20record.%20Some%20phase%20combinations%20favor%20atmospheric%20river%20landfalls%20and%20extreme%20daily%20or%20multi-day%20precipitation%2C%20while%20other%20phase%20combinations%20favor%20anomalously%20hot%20weather%20and%20drying%20Santa%20Ana%20wind%20conditions%20over%20Southern%20California.%20This%20historical%20perspective%20of%20atmospheric%20circulation%20and%20impacts%20over%2070%20years%20reveals%20that%20weather%20patterns%20are%20changing%20in%20a%20way%20that%20enhances%20wildfire%20hazard%20in%20California%2C%20while%20the%20frequency%20of%20weather%20patterns%20linked%20to%20historical%20floods%20is%20not%20diminishing.%20These%20changes%20highlight%20the%20rising%20hazards%20of%20cascading%20weather%20extremes%20in%20California%27s%20present%20and%20future.%22%2C%22date%22%3A%222022-08%22%2C%22language%22%3A%22English%22%2C%22DOI%22%3A%2210.1007%5C%2Fs00382-022-06361-7%22%2C%22ISSN%22%3A%220930-7575%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%223BVIFSK4%22%2C%227J6PFJNF%22%2C%22GS9TJSRH%22%2C%228U6EVDVF%22%2C%22P26VLJMP%22%2C%22FCUZWX58%22%2C%22GMYI6SZ8%22%2C%22SS6XDERI%22%5D%2C%22dateModified%22%3A%222022-08-15T21%3A08%3A29Z%22%7D%7D%2C%7B%22key%22%3A%22SHUZVSEW%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Collow%20et%20al.%22%2C%22parsedDate%22%3A%222022-04%22%2C%22numChildren%22%3A2%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ECollow%2C%20A.%20B.%20M.%2C%20Shields%2C%20C.%20A.%2C%20Guan%2C%20B.%2C%20Kim%2C%20S.%2C%20Lora%2C%20J.%20M.%2C%20McClenny%2C%20E.%20E.%2C%20Nardi%2C%20K.%2C%20Payne%2C%20A.%2C%20Reid%2C%20K.%2C%20Shearer%2C%20E.%20J.%2C%20Tome%2C%20R.%2C%20Wille%2C%20J.%20D.%2C%20Ramos%2C%20A.%20M.%2C%20Gorodetskaya%2C%20I.%20V.%2C%20Leung%2C%20L.%20R.%2C%20O%26%23x2019%3BBrien%2C%20T.%20A.%2C%20%3Cstrong%3ERalph%3C%5C%2Fstrong%3E%2C%20F.%20M.%2C%20Rutz%2C%20J.%2C%20Ullrich%2C%20P.%20A.%2C%20%26amp%3B%20Wehner%2C%20M.%20%282022%29.%20An%20overview%20of%20ARTMIP%26%23x2019%3Bs%20Tier%202%20Reanalysis%20Intercomparison%3A%20Uncertainty%20in%20the%20detection%20of%20atmospheric%20rivers%20and%20their%20associated%20precipitation.%20%3Ci%3EJournal%20of%20Geophysical%20Research-Atmospheres%3C%5C%2Fi%3E%2C%20%3Ci%3E127%3C%5C%2Fi%3E%288%29%2C%2020.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2021jd036155%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2021jd036155%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22An%20overview%20of%20ARTMIP%27s%20Tier%202%20Reanalysis%20Intercomparison%3A%20Uncertainty%20in%20the%20detection%20of%20atmospheric%20rivers%20and%20their%20associated%20precipitation%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%20B.%20M.%22%2C%22lastName%22%3A%22Collow%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C.%20A.%22%2C%22lastName%22%3A%22Shields%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%22%2C%22lastName%22%3A%22Guan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Kim%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%20M.%22%2C%22lastName%22%3A%22Lora%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22E.%20E.%22%2C%22lastName%22%3A%22McClenny%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22K.%22%2C%22lastName%22%3A%22Nardi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Payne%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22K.%22%2C%22lastName%22%3A%22Reid%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22E.%20J.%22%2C%22lastName%22%3A%22Shearer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R.%22%2C%22lastName%22%3A%22Tome%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%20D.%22%2C%22lastName%22%3A%22Wille%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%20M.%22%2C%22lastName%22%3A%22Ramos%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22I.%20V.%22%2C%22lastName%22%3A%22Gorodetskaya%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%20R.%22%2C%22lastName%22%3A%22Leung%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22T.%20A.%22%2C%22lastName%22%3A%22O%27Brien%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%20M.%22%2C%22lastName%22%3A%22Ralph%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%22%2C%22lastName%22%3A%22Rutz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%20A.%22%2C%22lastName%22%3A%22Ullrich%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Wehner%22%7D%5D%2C%22abstractNote%22%3A%22Atmospheric%20rivers%2C%20or%20long%20but%20narrow%20regions%20of%20enhanced%20water%20vapor%20transport%2C%20are%20an%20important%20component%20of%20the%20hydrologic%20cycle%20as%20they%20are%20responsible%20for%20much%20of%20the%20poleward%20transport%20of%20water%20vapor%20and%20result%20in%20precipitation%2C%20sometimes%20extreme%20in%20intensity.%20Despite%20their%20importance%2C%20much%20uncertainty%20remains%20in%20the%20detection%20of%20atmospheric%20rivers%20in%20large%20datasets%20such%20as%20reanalyses%20and%20century%20scale%20climate%20simulations.%20To%20understand%20this%20uncertainty%2C%20the%20Atmospheric%20River%20Tracking%20Method%20Intercomparison%20Project%20%28ARTMIP%29%20developed%20tiered%20experiments%2C%20including%20the%20Tier%202%20Reanalysis%20Intercomparison%20that%20is%20presented%20here.%20Eleven%20detection%20algorithms%20submitted%20hourly%20tags--binary%20fields%20indicating%20the%20presence%20or%20absence%20of%20atmospheric%20rivers--of%20detected%20atmospheric%20rivers%20in%20the%20Modern%20Era%20Retrospective%20Analysis%20for%20Research%20and%20Applications%2C%20version%202%20%28MERRA-2%29%20and%20European%20Centre%20for%20Medium-Range%20Weather%20Forecasts%27%20Reanalysis%20Version%205%20%28ERA5%29%20as%20well%20as%20six-hourly%20tags%20in%20the%20Japanese%2055-year%20Reanalysis%20%28JRA-55%29.%20Due%20to%20a%20higher%20climatological%20mean%20for%20integrated%20water%20vapor%20transport%20in%20MERRA-2%2C%20atmospheric%20rivers%20were%20detected%20more%20frequently%20relative%20to%20the%20other%20two%20reanalyses%2C%20particularly%20in%20algorithms%20that%20use%20a%20fixed%20threshold%20for%20water%20vapor%20transport.%20The%20finer%20horizontal%20resolution%20of%20ERA5%20resulted%20in%20narrower%20atmospheric%20rivers%20and%20an%20ability%20to%20detect%20atmospheric%20rivers%20along%20resolved%20coastlines.%20The%20fraction%20of%20hemispheric%20area%20covered%20by%20ARs%20varies%20throughout%20the%20year%20in%20all%20three%20reanalyses%2C%20with%20different%20atmospheric%20river%20detection%20tools%20having%20different%20seasonal%20cycles.%22%2C%22date%22%3A%222022%5C%2F04%22%2C%22language%22%3A%22English%22%2C%22DOI%22%3A%2210.1029%5C%2F2021jd036155%22%2C%22ISSN%22%3A%222169-897X%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%223BVIFSK4%22%5D%2C%22dateModified%22%3A%222022-07-13T17%3A23%3A40Z%22%7D%7D%2C%7B%22key%22%3A%223UWCPNNA%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Michaelis%20et%20al.%22%2C%22parsedDate%22%3A%222022-03%22%2C%22numChildren%22%3A6%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EMichaelis%2C%20A.%20C.%2C%20Gershunov%2C%20A.%2C%20Weyant%2C%20A.%2C%20Fish%2C%20M.%20A.%2C%20Shulgina%2C%20T.%2C%20%26amp%3B%20%3Cstrong%3ERalph%3C%5C%2Fstrong%3E%2C%20F.%20M.%20%282022%29.%20Atmospheric%20river%20precipitation%20enhanced%20by%20climate%20change%3A%20A%20case%20study%20of%20the%20storm%20that%20contributed%20to%20California%26%23x2019%3Bs%20Oroville%20Dam%20crisis.%20%3Ci%3EEarths%20Future%3C%5C%2Fi%3E%2C%20%3Ci%3E10%3C%5C%2Fi%3E%283%29%2C%2012.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2021ef002537%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2021ef002537%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Atmospheric%20river%20precipitation%20enhanced%20by%20climate%20change%3A%20A%20case%20study%20of%20the%20storm%20that%20contributed%20to%20California%27s%20Oroville%20Dam%20crisis%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%20C.%22%2C%22lastName%22%3A%22Michaelis%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Gershunov%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Weyant%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%20A.%22%2C%22lastName%22%3A%22Fish%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22T.%22%2C%22lastName%22%3A%22Shulgina%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%20M.%22%2C%22lastName%22%3A%22Ralph%22%7D%5D%2C%22abstractNote%22%3A%22An%20increasingly%20volatile%20hydroclimate%20increases%20California%27s%20reliance%20on%20precipitation%20from%20atmospheric%20rivers%20%28ARs%29%20for%20water%20resources.%20Here%2C%20we%20simulate%20the%20AR%20that%20contributed%20to%20the%20Oroville%20Dam%20crisis%20in%20early%20February%202017%20under%20global%20climate%20conditions%20representing%20preindustrial%2C%20present-day%2C%20mid-%2C%20and%20late-21st%20century%20environments.%20This%20event%20consisted%20of%20two%20distinct%20AR%20pulses%3A%20the%20first%20snowy%2C%20westerly%2C%20and%20cool%20followed%20by%20a%20southwesterly%20and%20warm%20pulse%20resulting%20in%20copious%20rain-on-snow.%20We%20estimate%20that%20climate%20change%20to%20date%20results%20in%20similar%20to%2011%25%20and%20similar%20to%2015%25%20increase%20in%20precipitation%20over%20the%20Feather%20River%20Basin%20in%20Northern%20California%20for%20the%20first%20and%20second%20pulses%2C%20respectively%2C%20with%20late-21st%20century%20enhancements%20upwards%20of%20similar%20to%2021%25%20and%20similar%20to%2059%25%2C%20respectively.%20Although%20both%20pulses%20were%20enhanced%20by%20the%20imposed%20climate%20changes%2C%20the%20thermodynamic%20response%20and%20subsequent%20precipitation%20increases%20were%20most%20substantial%20during%20the%20second%20pulse.%20The%20disparate%20changes%20demonstrated%20here%20highlight%20that%20not%20all%20ARs%20will%20respond%20similarly%20in%20a%20warmer%20world.%22%2C%22date%22%3A%222022%5C%2F03%22%2C%22language%22%3A%22English%22%2C%22DOI%22%3A%2210.1029%5C%2F2021ef002537%22%2C%22ISSN%22%3A%22%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%223BVIFSK4%22%2C%227J6PFJNF%22%2C%22P26VLJMP%22%5D%2C%22dateModified%22%3A%222022-08-31T22%3A49%3A01Z%22%7D%7D%2C%7B%22key%22%3A%22VAC2MCNR%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Fish%20et%20al.%22%2C%22parsedDate%22%3A%222022-03%22%2C%22numChildren%22%3A4%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EFish%2C%20M.%20A.%2C%20Done%2C%20J.%20M.%2C%20Swain%2C%20D.%20L.%2C%20Wilson%2C%20A.%20M.%2C%20Michaelis%2C%20A.%20C.%2C%20Gibson%2C%20P.%20B.%2C%20%26amp%3B%20%3Cstrong%3ERalph%3C%5C%2Fstrong%3E%2C%20F.%20M.%20%282022%29.%20Large-Scale%20Environments%20of%20Successive%20Atmospheric%20River%20Events%20Leading%20to%20Compound%20Precipitation%20Extremes%20in%20California.%20%3Ci%3EJournal%20of%20Climate%3C%5C%2Fi%3E%2C%20%3Ci%3E35%3C%5C%2Fi%3E%285%29%2C%201515%26%23x2013%3B1536.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1175%5C%2Fjcli-d-21-0168.1%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1175%5C%2Fjcli-d-21-0168.1%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Large-Scale%20Environments%20of%20Successive%20Atmospheric%20River%20Events%20Leading%20to%20Compound%20Precipitation%20Extremes%20in%20California%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%20A.%22%2C%22lastName%22%3A%22Fish%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%20M.%22%2C%22lastName%22%3A%22Done%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%20L.%22%2C%22lastName%22%3A%22Swain%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%20M.%22%2C%22lastName%22%3A%22Wilson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%20C.%22%2C%22lastName%22%3A%22Michaelis%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%20B.%22%2C%22lastName%22%3A%22Gibson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%20M.%22%2C%22lastName%22%3A%22Ralph%22%7D%5D%2C%22abstractNote%22%3A%22Successive%20atmospheric%20river%20%28AR%29%20events-known%20as%20AR%20families-can%20result%20in%20prolonged%20and%20elevated%20hydrological%20impacts%20relative%20to%20single%20ARs%20due%20to%20the%20lack%20of%20recovery%20time%20between%20periods%20of%20precipitation.%20Despite%20the%20outsized%20societal%20impacts%20that%20often%20stem%20from%20AR%20families%2C%20the%20large-scale%20environments%20and%20mechanisms%20associated%20with%20these%20compound%20events%20remain%20poorly%20understood.%20In%20this%20work%2C%20a%20new%20reanalysis-based%2039-yr%20catalog%20of%20248%20AR%20family%20events%20affecting%20California%20between%201981%20and%202019%20is%20introduced.%20Nearly%20all%20%2894%25%29%20of%20the%20interannual%20variability%20in%20AR%20frequency%20is%20driven%20by%20AR%20family%20versus%20single%20events.%20Using%20k-means%20clustering%20on%20the%20500-hPa%20geopotential%20height%20field%2C%20six%20distinct%20clusters%20of%20large-scale%20patterns%20associated%20with%20AR%20families%20are%20identified.%20Two%20clusters%20are%20of%20particular%20interest%20due%20to%20their%20strong%20relationship%20with%20phases%20of%20El%20Nino-Southern%20Oscillation%20%28ENSO%29.%20One%20of%20these%20clusters%20is%20characterized%20by%20a%20strong%20ridge%20in%20the%20Bering%20Sea%20and%20Rossby%20wave%20propagation%2C%20most%20frequently%20occurs%20during%20La%20Nina%20and%20neutral%20ENSO%20years%2C%20and%20is%20associated%20with%20the%20highest%20cluster-average%20precipitation%20across%20California.%20The%20other%20cluster%2C%20characterized%20by%20a%20zonal%20elongation%20of%20lower%20geopotential%20heights%20across%20the%20Pacific%20basin%20and%20an%20extended%20North%20Pacific%20jet%2C%20most%20frequently%20occurs%20during%20El%20Nino%20years%20and%20is%20associated%20with%20lower%20cluster-average%20precipitation%20across%20California%20but%20with%20a%20longer%20duration.%20In%20contrast%2C%20single%20AR%20events%20do%20not%20show%20obvious%20clustering%20of%20spatial%20patterns.%20This%20difference%20suggests%20that%20the%20potential%20predictability%20of%20AR%20families%20may%20be%20enhanced%20relative%20to%20single%20AR%20events%2C%20especially%20on%20subseasonal%20to%20seasonal%20time%20scales.%22%2C%22date%22%3A%222022%5C%2F03%22%2C%22language%22%3A%22English%22%2C%22DOI%22%3A%2210.1175%5C%2Fjcli-d-21-0168.1%22%2C%22ISSN%22%3A%220894-8755%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%22H3FG68WV%22%2C%223BVIFSK4%22%5D%2C%22dateModified%22%3A%222022-07-14T15%3A44%3A19Z%22%7D%7D%2C%7B%22key%22%3A%22ZB2LLVCN%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22O%27Brien%20et%20al.%22%2C%22parsedDate%22%3A%222022-03%22%2C%22numChildren%22%3A2%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EO%26%23x2019%3BBrien%2C%20T.%20A.%2C%20Wehner%2C%20M.%20F.%2C%20Payne%2C%20A.%20E.%2C%20Shields%2C%20C.%20A.%2C%20Rutz%2C%20J.%20J.%2C%20Leung%2C%20L.%20R.%2C%20%3Cstrong%3ERalph%3C%5C%2Fstrong%3E%2C%20F.%20M.%2C%20Collow%2C%20A.%2C%20Gorodetskaya%2C%20I.%2C%20Guan%2C%20B.%2C%20Lora%2C%20J.%20M.%2C%20McClenny%2C%20E.%2C%20Nardi%2C%20K.%20M.%2C%20Ramos%2C%20A.%20M.%2C%20Tome%2C%20R.%2C%20Sarangi%2C%20C.%2C%20Shearer%2C%20E.%20J.%2C%20Ullrich%2C%20P.%20A.%2C%20Zarzycki%2C%20C.%2C%20%26%23x2026%3B%20Zhou%2C%20Y.%20%282022%29.%20Increases%20in%20future%20AR%20count%20and%20size%3A%20Overview%20of%20the%20ARTMIP%20Tier%202%20CMIP5%5C%2F6%20experiment.%20%3Ci%3EJournal%20of%20Geophysical%20Research-Atmospheres%3C%5C%2Fi%3E%2C%20%3Ci%3E127%3C%5C%2Fi%3E%286%29%2C%2015.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2021jd036013%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2021jd036013%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Increases%20in%20future%20AR%20count%20and%20size%3A%20Overview%20of%20the%20ARTMIP%20Tier%202%20CMIP5%5C%2F6%20experiment%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22T.%20A.%22%2C%22lastName%22%3A%22O%27Brien%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%20F.%22%2C%22lastName%22%3A%22Wehner%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%20E.%22%2C%22lastName%22%3A%22Payne%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C.%20A.%22%2C%22lastName%22%3A%22Shields%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%20J.%22%2C%22lastName%22%3A%22Rutz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%20R.%22%2C%22lastName%22%3A%22Leung%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%20M.%22%2C%22lastName%22%3A%22Ralph%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Collow%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22I.%22%2C%22lastName%22%3A%22Gorodetskaya%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%22%2C%22lastName%22%3A%22Guan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%20M.%22%2C%22lastName%22%3A%22Lora%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22E.%22%2C%22lastName%22%3A%22McClenny%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22K.%20M.%22%2C%22lastName%22%3A%22Nardi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%20M.%22%2C%22lastName%22%3A%22Ramos%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R.%22%2C%22lastName%22%3A%22Tome%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C.%22%2C%22lastName%22%3A%22Sarangi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22E.%20J.%22%2C%22lastName%22%3A%22Shearer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%20A.%22%2C%22lastName%22%3A%22Ullrich%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C.%22%2C%22lastName%22%3A%22Zarzycki%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%22%2C%22lastName%22%3A%22Loring%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22H.%22%2C%22lastName%22%3A%22Huang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22H.%20A.%22%2C%22lastName%22%3A%22Inda-Diaz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%20M.%22%2C%22lastName%22%3A%22Rhoades%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Y.%22%2C%22lastName%22%3A%22Zhou%22%7D%5D%2C%22abstractNote%22%3A%22The%20Atmospheric%20River%20%28AR%29%20Tracking%20Method%20Intercomparison%20Project%20%28ARTMIP%29%20is%20a%20community%20effort%20to%20systematically%20assess%20how%20the%20uncertainties%20from%20AR%20detectors%20%28ARDTs%29%20impact%20our%20scientific%20understanding%20of%20ARs.%20This%20study%20describes%20the%20ARTMIP%20Tier%202%20experimental%20design%20and%20initial%20results%20using%20the%20Coupled%20Model%20Intercomparison%20Project%20%28CMIP%29%20Phases%205%20and%206%20multi-model%20ensembles.%20We%20show%20that%20AR%20statistics%20from%20a%20given%20ARDT%20in%20CMIP5%5C%2F6%20historical%20simulations%20compare%20remarkably%20well%20with%20the%20MERRA-2%20reanalysis.%20In%20CMIP5%5C%2F6%20future%20simulations%2C%20most%20ARDTs%20project%20a%20global%20increase%20in%20AR%20frequency%2C%20counts%2C%20and%20sizes%2C%20especially%20along%20the%20western%20coastlines%20of%20the%20Pacific%20and%20Atlantic%20oceans.%20We%20find%20that%20the%20choice%20of%20ARDT%20is%20the%20dominant%20contributor%20to%20the%20uncertainty%20in%20projected%20AR%20frequency%20when%20compared%20with%20model%20choice.%20These%20results%20imply%20that%20new%20projects%20investigating%20future%20changes%20in%20ARs%20should%20explicitly%20consider%20ARDT%20uncertainty%20as%20a%20core%20part%20of%20the%20experimental%20design.%22%2C%22date%22%3A%222022%5C%2F03%22%2C%22language%22%3A%22English%22%2C%22DOI%22%3A%2210.1029%5C%2F2021jd036013%22%2C%22ISSN%22%3A%222169-897X%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%223BVIFSK4%22%5D%2C%22dateModified%22%3A%222022-07-13T17%3A23%3A37Z%22%7D%7D%2C%7B%22key%22%3A%22NWL7TDQ3%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22de%20Orla-Barile%20et%20al.%22%2C%22parsedDate%22%3A%222022-01%22%2C%22numChildren%22%3A4%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3Ede%20Orla-Barile%2C%20M.%2C%20Cannon%2C%20F.%2C%20Oakley%2C%20N.%20S.%2C%20%26amp%3B%20%3Cstrong%3ERalph%3C%5C%2Fstrong%3E%2C%20F.%20M.%20%282022%29.%20A%20climatology%20of%20narrow%20cold-frontal%20rainbands%20in%20Southern%20California.%20%3Ci%3EGeophysical%20Research%20Letters%3C%5C%2Fi%3E%2C%20%3Ci%3E49%3C%5C%2Fi%3E%282%29%2C%2010.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2021gl095362%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2021gl095362%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22A%20climatology%20of%20narrow%20cold-frontal%20rainbands%20in%20Southern%20California%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22de%20Orla-Barile%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Cannon%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22N.%20S.%22%2C%22lastName%22%3A%22Oakley%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%20M.%22%2C%22lastName%22%3A%22Ralph%22%7D%5D%2C%22abstractNote%22%3A%22Narrow%20cold-frontal%20rainbands%20%28NCFRs%29%20produce%20short-duration%2C%20high-intensity%20precipitation%20associated%20with%20flash%20flooding%20and%20debris%20flows%20in%20Southern%20California%2C%20including%20the%20extremely%20destructive%202018%20Montecito%20event.%20This%20manuscript%20presents%20the%20first%20known%20catalog%20of%20NCFR%20events%20in%20this%20region%20during%20winter%20seasons%201995-2020.%20A%20manual%20approach%20was%20used%20to%20identify%20NCFRs%20in%20radar%20imagery%2C%20supported%20by%20rain%20gauges%20and%20atmospheric%20reanalysis%20products.%20In%20total%2C%2094%20NCFRs%20were%20observed%2C%20with%20an%20average%20of%20three%20landfalling%20events%20occurring%20per%20water%20year.%20Propagation%20and%20impacts%20of%20these%20NCFRs%20were%20also%20investigated.%20Composite%20analyses%20of%20synoptic%20conditions%20reveal%20similarities%20across%20events%3B%20however%2C%20individual%20NCFRs%20exist%20on%20a%20spectrum%20of%20atmospheric%20conditions%2C%20precipitation%20intensity%2C%20and%20associated%20hazards.%20This%20regional%20record%20serves%20as%20a%20control%20dataset%20for%20the%20development%20of%20an%20objective%20identification%20algorithm%20and%20supports%20the%20evaluation%20and%20improvement%20of%20forecasting%20procedures.%20Methods%20established%20here%20are%20transferrable%20to%20other%20mid-latitude%20regions%20with%20limited%20radar%20coverage.%22%2C%22date%22%3A%222022%5C%2F01%22%2C%22language%22%3A%22English%22%2C%22DOI%22%3A%2210.1029%5C%2F2021gl095362%22%2C%22ISSN%22%3A%220094-8276%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%223BVIFSK4%22%2C%22V5RYN2RI%22%5D%2C%22dateModified%22%3A%222022-10-20T15%3A53%3A12Z%22%7D%7D%2C%7B%22key%22%3A%2298HPXR39%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Chapman%20et%20al.%22%2C%22parsedDate%22%3A%222022-01%22%2C%22numChildren%22%3A2%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EChapman%2C%20W.%20E.%2C%20Delle%20Monache%2C%20L.%2C%20Alessandrini%2C%20S.%2C%20Subramanian%2C%20A.%20C.%2C%20%3Cstrong%3ERalph%3C%5C%2Fstrong%3E%2C%20F.%20M.%2C%20Xie%2C%20S.%20P.%2C%20Lerch%2C%20S.%2C%20%26amp%3B%20Hayatbini%2C%20N.%20%282022%29.%20Probabilistic%20Predictions%20from%20Deterministic%20Atmospheric%20River%20Forecasts%20with%20Deep%20Learning.%20%3Ci%3EMonthly%20Weather%20Review%3C%5C%2Fi%3E%2C%20%3Ci%3E150%3C%5C%2Fi%3E%281%29%2C%20215%26%23x2013%3B234.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1175%5C%2Fmwr-d-21-0106.1%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1175%5C%2Fmwr-d-21-0106.1%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Probabilistic%20Predictions%20from%20Deterministic%20Atmospheric%20River%20Forecasts%20with%20Deep%20Learning%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22W.%20E.%22%2C%22lastName%22%3A%22Chapman%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%22%2C%22lastName%22%3A%22Delle%20Monache%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Alessandrini%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%20C.%22%2C%22lastName%22%3A%22Subramanian%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%20M.%22%2C%22lastName%22%3A%22Ralph%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%20P.%22%2C%22lastName%22%3A%22Xie%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Lerch%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22N.%22%2C%22lastName%22%3A%22Hayatbini%22%7D%5D%2C%22abstractNote%22%3A%22Deep-learning%20%28DL%29%20postprocessing%20methods%20are%20examined%20to%20obtain%20reliable%20and%20accurate%20probabilistic%20forecasts%20from%20single-member%20numerical%20weather%20predictions%20of%20integrated%20vapor%20transport%20%28IVT%29.%20Using%20a%2034-yr%20reforecast%2C%20based%20on%20the%20Center%20for%20Western%20Weather%20and%20Water%20Extremes%20West-WRF%20mesoscale%20model%20of%20North%20American%20West%20Coast%20IVT%2C%20the%20dynamically%5C%2Fstatistically%20derived%200-120-h%20probabilistic%20forecasts%20for%20IVT%20under%20atmospheric%20river%20%28AR%29%20conditions%20are%20tested.%20These%20predictions%20are%20compared%20with%20the%20Global%20Ensemble%20Forecast%20System%20%28GEFS%29%20dynamic%20model%20and%20the%20GEFS%20calibrated%20with%20a%20neural%20network.%20In%20addition%2C%20the%20DL%20methods%20are%20tested%20against%20an%20established%2C%20but%20more%20rigid%2C%20statistical-dynamical%20ensemble%20method%20%28the%20analog%20ensemble%29.%20The%20findings%20show%2C%20using%20continuous%20ranked%20probability%20skill%20score%20and%20Brier%20skill%20score%20as%20verification%20metrics%2C%20that%20the%20DL%20methods%20compete%20with%20or%20outperform%20the%20calibrated%20GEFS%20system%20at%20lead%20times%20from%200%20to%2048%20h%20and%20again%20from%2072%20to%20120%20h%20for%20AR%20vapor%20transport%20events.%20In%20addition%2C%20the%20DL%20methods%20generate%20reliable%20and%20skillful%20probabilistic%20forecasts.%20The%20implications%20of%20varying%20the%20length%20of%20the%20training%20dataset%20are%20examined%2C%20and%20the%20results%20show%20that%20the%20DL%20methods%20learn%20relatively%20quickly%20and%20similar%20to%2010%20years%20of%20hindcast%20data%20are%20required%20to%20compete%20with%20the%20GEFS%20ensemble.%22%2C%22date%22%3A%222022%5C%2F01%22%2C%22language%22%3A%22English%22%2C%22DOI%22%3A%2210.1175%5C%2Fmwr-d-21-0106.1%22%2C%22ISSN%22%3A%220027-0644%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%22F399VRET%22%2C%223BVIFSK4%22%2C%22GS9TJSRH%22%5D%2C%22dateModified%22%3A%222022-07-14T15%3A44%3A30Z%22%7D%7D%2C%7B%22key%22%3A%22W5RBIJBX%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Afzali%20Gorooh%20et%20al.%22%2C%22parsedDate%22%3A%222022%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EAfzali%20Gorooh%2C%20V.%2C%20Shearer%2C%20E.%20J.%2C%20Nguyen%2C%20P.%2C%20Hsu%2C%20K.%2C%20Sorooshian%2C%20S.%2C%20Cannon%2C%20F.%2C%20%26amp%3B%20%3Cstrong%3ERalph%3C%5C%2Fstrong%3E%2C%20M.%20%282022%29.%20Performance%20of%20New%20Near-Real-Time%20PERSIANN%20Product%20%28PDIR-Now%29%20for%20Atmospheric%20River%20Events%20over%20the%20Russian%20River%20Basin%2C%20California.%20%3Ci%3EJournal%20of%20Hydrometeorology%3C%5C%2Fi%3E%2C%20%3Ci%3E23%3C%5C%2Fi%3E%2812%29%2C%201899%26%23x2013%3B1911.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1175%5C%2FJHM-D-22-0066.1%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1175%5C%2FJHM-D-22-0066.1%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Performance%20of%20New%20Near-Real-Time%20PERSIANN%20Product%20%28PDIR-Now%29%20for%20Atmospheric%20River%20Events%20over%20the%20Russian%20River%20Basin%2C%20California%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Vesta%22%2C%22lastName%22%3A%22Afzali%20Gorooh%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Eric%20J.%22%2C%22lastName%22%3A%22Shearer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Phu%22%2C%22lastName%22%3A%22Nguyen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Kuolin%22%2C%22lastName%22%3A%22Hsu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Soroosh%22%2C%22lastName%22%3A%22Sorooshian%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Forest%22%2C%22lastName%22%3A%22Cannon%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Marty%22%2C%22lastName%22%3A%22Ralph%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Most%20heavy%20precipitation%20events%20and%20extreme%20flooding%20over%20the%20U.S.%20Pacific%20coast%20can%20be%20linked%20to%20prevalent%20atmospheric%20river%20%28AR%29%20conditions.%20Thus%2C%20reliable%20quantitative%20precipitation%20estimation%20with%20a%20rich%20spatiotemporal%20resolution%20is%20vital%20for%20water%20management%20and%20early%20warning%20systems%20of%20flooding%20and%20landslides%20over%20these%20regions.%20At%20the%20same%20time%2C%20high-quality%20near-real-time%20measurements%20of%20AR%20precipitation%20remain%20challenging%20due%20to%20the%20complex%20topographic%20features%20of%20land%20surface%20and%20meteorological%20conditions%20of%20the%20region%3A%20specifically%2C%20orographic%20features%20occlude%20radar%20measurements%20while%20infrared-based%20algorithms%20face%20challenges%2C%20differentiating%20between%20both%20cold%20brightband%20%28BB%29%20precipitation%20and%20the%20warmer%20nonbrightband%20%28NBB%29%20precipitation.%20It%20should%20be%20noted%20that%20the%20latter%20precipitation%20is%20characterized%20by%20greater%20orographic%20enhancement.%20In%20this%20study%2C%20we%20evaluate%20the%20performance%20of%20a%20recently%20developed%20near-real-time%20satellite%20precipitation%20algorithm%3A%20Precipitation%20Estimation%20from%20Remotely%20Sensed%20Information%20Using%20Artificial%20Neural%20Networks%20%28PERSIANN%29%20Dynamic%20Infrared%5Cu2013Rain%20Rate-Now%20%28PDIR-Now%29.%20This%20model%20is%20primarily%20dependent%20on%20infrared%20information%20from%20geostationary%20satellites%20as%20input%3B%20consequently%2C%20PDIR-Now%20has%20the%20advantage%20of%20short%20data%20latency%2C%2015%5Cu201360-min%20delay%20between%20observation%20to%20precipitation%20product%20delivery.%20The%20performance%20of%20PDIR-Now%20is%20analyzed%20with%20a%20focus%20on%20AR-related%20events%20for%20cases%20dominated%20by%20NBB%20and%20BB%20precipitation%20over%20the%20Russian%20River%20basin.%20In%20our%20investigations%2C%20we%20utilize%20S-band%20%283-GHz%29%20precipitation%20profilers%20with%20Joss%5C%2FParsivel%20disdrometer%20measurements%20at%20the%20Middletown%20and%20Santa%20Rosa%20stations%20to%20classify%20BB%20and%20NBB%20precipitation%20events.%20In%20general%2C%20our%20analysis%20shows%20that%20PDIR-Now%20is%20more%20skillful%20in%20retrieving%20precipitation%20rates%20over%20both%20BB%20and%20NBB%20events%20across%20the%20topologically%20complex%20study%20area%20as%20compared%20to%20PERSIANN-Cloud%20Classification%20System%20%28CCS%29.%20Also%2C%20we%20discuss%20the%20performance%20of%20well-known%20operational%20near-real-time%20precipitation%20products%20from%202017%20to%202019.%20Conventional%20categorical%20and%20volumetric%20categorical%20indices%2C%20as%20well%20as%20continuous%20statistical%20metrics%2C%20are%20used%20to%20show%20the%20differences%20between%20various%20high-resolution%20precipitation%20products%20such%20as%20Multi-Radar%20Multi-Sensor%20%28MRMS%29.%22%2C%22date%22%3A%2212%5C%2F2022%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1175%5C%2FJHM-D-22-0066.1%22%2C%22ISSN%22%3A%221525-755X%2C%201525-7541%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fjournals.ametsoc.org%5C%2Fview%5C%2Fjournals%5C%2Fhydr%5C%2F23%5C%2F12%5C%2FJHM-D-22-0066.1.xml%22%2C%22collections%22%3A%5B%223BVIFSK4%22%5D%2C%22dateModified%22%3A%222023-02-17T16%3A55%3A36Z%22%7D%7D%2C%7B%22key%22%3A%225KKZ7VWN%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Stewart%20et%20al.%22%2C%22parsedDate%22%3A%222022%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EStewart%2C%20B.%20E.%2C%20Cordeira%2C%20J.%20M.%2C%20%26amp%3B%20%3Cstrong%3ERalph%3C%5C%2Fstrong%3E%2C%20F.%20M.%20%282022%29.%20Evaluating%20GFS%20and%20ECMWF%20Ensemble%20Forecasts%20of%20Integrated%20Water%20Vapor%20Transport%20along%20the%20U.S.%20West%20Coast.%20%3Ci%3EWeather%20and%20Forecasting%3C%5C%2Fi%3E%2C%20%3Ci%3E37%3C%5C%2Fi%3E%2811%29%2C%201985%26%23x2013%3B2004.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1175%5C%2FWAF-D-21-0114.1%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1175%5C%2FWAF-D-21-0114.1%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Evaluating%20GFS%20and%20ECMWF%20Ensemble%20Forecasts%20of%20Integrated%20Water%20Vapor%20Transport%20along%20the%20U.S.%20West%20Coast%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Briana%20E.%22%2C%22lastName%22%3A%22Stewart%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jason%20M.%22%2C%22lastName%22%3A%22Cordeira%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%20Martin%22%2C%22lastName%22%3A%22Ralph%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Atmospheric%20rivers%20%28ARs%29%20are%20long%20and%20narrow%20regions%20in%20the%20atmosphere%20of%20enhanced%20integrated%20water%20vapor%20transport%20%28IVT%29%20and%20can%20produce%20extreme%20precipitation%20and%20high%20societal%20impacts.%20Reliable%20and%20skillful%20forecasts%20of%20landfalling%20ARs%20in%20the%20western%20United%20States%20are%20critical%20to%20hazard%20preparation%20and%20aid%20in%20decision%20support%20activities%2C%20such%20as%20Forecast-Informed%20Reservoir%20Operations%20%28FIRO%29.%20The%20purpose%20of%20this%20study%20is%20to%20compare%20the%20cool-season%20water%20year%20skill%20of%20the%20NCEP%20Global%20Ensemble%20Forecast%20System%20%28GEFS%29%20and%20ECMWF%20Ensemble%20Prediction%20System%20%28EPS%29%20forecasts%20of%20IVT%20along%20the%20U.S.%20West%20Coast%20for%202017%5Cu201320.%20The%20skill%20is%20analyzed%20using%20probability-over-threshold%20forecasts%20of%20IVT%20magnitudes%20%5Cu2265%20250%20kg%20m%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu22121%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20s%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu22121%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%28%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20P%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20250%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29%20using%20contingency%20table%20skill%20metrics%20in%20coastal%20Northern%20California%20and%20along%20the%20west%20coast%20of%20North%20America.%20Analysis%20of%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20P%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20250%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20with%20lead%20time%20%28%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20d%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Prog%5C%2F%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20dt%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29%20found%20that%20the%20EPS%20provided%20%5Cu223c1%20day%20of%20additional%20lead%20time%20for%20situational%20awareness%20over%20the%20GEFS%20at%20lead%20times%20of%206%5Cu201310%20days.%20Forecast%20skill%20analysis%20highlights%20that%20the%20EPS%20leads%20over%20the%20GEFS%20with%20success%20ratios%200.10%5Cu20130.15%20higher%20at%20lead%20times%20%3E%206%20days%20for%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20P%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20250%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20thresholds%20of%20%5Cu226525%25%20and%20%5Cu226550%25%2C%20while%20event-based%20skill%20analysis%20using%20the%20probability%20of%20detection%20%28POD%29%20found%20that%20both%20models%20were%20largely%20similar%20with%20minor%20latitudinal%20variations%20favoring%20higher%20POD%20for%20each%20model%20in%20different%20locations%20along%20the%20coast.%20The%20relative%20skill%20of%20the%20EPS%20over%20the%20GEFS%20is%20largely%20attributed%20to%20overforecasting%20by%20the%20GEFS%20at%20longer%20lead%20times%20and%20an%20increase%20in%20the%20false%20alarm%20ratio.%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Significance%20Statement%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20The%20purpose%20of%20this%20study%20is%20to%20evaluate%20the%20efficacy%20of%20the%20NCEP%20Global%20Ensemble%20Forecast%20System%20%28GEFS%29%20and%20the%20ECMWF%20Ensemble%20Prediction%20System%20%28EPS%29%20in%20forecasting%20enhanced%20water%20vapor%20transport%20along%20the%20U.S.%20West%20Coast%20commonly%20associated%20with%20landfalling%20atmospheric%20rivers%20and%20heavy%20precipitation.%20The%20ensemble%20models%20allow%20us%20to%20calculate%20the%20probability%20that%20enhanced%20water%20vapor%20transport%20will%20occur%2C%20thereby%20providing%20situational%20awareness%20for%20decision-making%2C%20such%20as%20in%20hazard%20mitigation%20and%20water%20resource%20management.%20The%20results%20of%20this%20study%20indicate%20that%20the%20EPS%20model%20is%20on%20average%20more%20skillful%20than%20the%20GEFS%20model%20at%20lead%20times%20of%20%5Cu223c6%5Cu201310%20days%20with%20a%20higher%20success%20ratio%20and%20lower%20false%20alarm%20ratio.%22%2C%22date%22%3A%2211%5C%2F2022%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1175%5C%2FWAF-D-21-0114.1%22%2C%22ISSN%22%3A%220882-8156%2C%201520-0434%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fjournals.ametsoc.org%5C%2Fview%5C%2Fjournals%5C%2Fwefo%5C%2F37%5C%2F11%5C%2FWAF-D-21-0114.1.xml%22%2C%22collections%22%3A%5B%223BVIFSK4%22%5D%2C%22dateModified%22%3A%222023-01-25T21%3A23%3A03Z%22%7D%7D%2C%7B%22key%22%3A%22GED4RRUS%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Sun%20et%20al.%22%2C%22parsedDate%22%3A%222022%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ESun%2C%20W.%2C%20Liu%2C%20Z.%2C%20Davis%2C%20C.%20A.%2C%20%3Cstrong%3ERalph%3C%5C%2Fstrong%3E%2C%20F.%20M.%2C%20Monache%2C%20L.%20D.%2C%20%26amp%3B%20Zheng%2C%20M.%20%282022%29.%20Impacts%20of%20dropsonde%20and%20satellite%20observations%20on%20the%20forecasts%20of%20two%20atmospheric-river-related%20heavy%20rainfall%20events.%20%3Ci%3EAtmospheric%20Research%3C%5C%2Fi%3E%2C%20%3Ci%3E278%3C%5C%2Fi%3E%2C%20106327.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.atmosres.2022.106327%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.atmosres.2022.106327%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Impacts%20of%20dropsonde%20and%20satellite%20observations%20on%20the%20forecasts%20of%20two%20atmospheric-river-related%20heavy%20rainfall%20events%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Wei%22%2C%22lastName%22%3A%22Sun%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Zhiquan%22%2C%22lastName%22%3A%22Liu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christopher%20A.%22%2C%22lastName%22%3A%22Davis%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%20Martin%22%2C%22lastName%22%3A%22Ralph%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Luca%20Delle%22%2C%22lastName%22%3A%22Monache%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Minghua%22%2C%22lastName%22%3A%22Zheng%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%2211%5C%2F2022%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1016%5C%2Fj.atmosres.2022.106327%22%2C%22ISSN%22%3A%2201698095%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flinkinghub.elsevier.com%5C%2Fretrieve%5C%2Fpii%5C%2FS0169809522003131%22%2C%22collections%22%3A%5B%223BVIFSK4%22%2C%22GS9TJSRH%22%5D%2C%22dateModified%22%3A%222022-08-15T20%3A33%3A11Z%22%7D%7D%2C%7B%22key%22%3A%22NWA9TSC6%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22White%20et%20al.%22%2C%22parsedDate%22%3A%222022%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EWhite%2C%20C.%20J.%2C%20Domeisen%2C%20D.%20I.%20V.%2C%20Acharya%2C%20N.%2C%20Adefisan%2C%20E.%20A.%2C%20Anderson%2C%20M.%20L.%2C%20Aura%2C%20S.%2C%20Balogun%2C%20A.%20A.%2C%20Bertram%2C%20D.%2C%20Bluhm%2C%20S.%2C%20Brayshaw%2C%20D.%20J.%2C%20Browell%2C%20J.%2C%20B%26%23xFC%3Beler%2C%20D.%2C%20Charlton-Perez%2C%20A.%2C%20Chourio%2C%20X.%2C%20Christel%2C%20I.%2C%20Coelho%2C%20C.%20A.%20S.%2C%20DeFlorio%2C%20M.%20J.%2C%20Delle%20Monache%2C%20L.%2C%20Di%20Giuseppe%2C%20F.%2C%20%26%23x2026%3B%20Wilson%2C%20R.%20G.%20%282022%29.%20Advances%20in%20the%20Application%20and%20Utility%20of%20Subseasonal-to-Seasonal%20Predictions.%20%3Ci%3EBulletin%20of%20the%20American%20Meteorological%20Society%3C%5C%2Fi%3E%2C%20%3Ci%3E103%3C%5C%2Fi%3E%286%29%2C%20E1448%26%23x2013%3BE1472.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1175%5C%2FBAMS-D-20-0224.1%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1175%5C%2FBAMS-D-20-0224.1%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Advances%20in%20the%20Application%20and%20Utility%20of%20Subseasonal-to-Seasonal%20Predictions%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christopher%20J.%22%2C%22lastName%22%3A%22White%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Daniela%20I.%20V.%22%2C%22lastName%22%3A%22Domeisen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nachiketa%22%2C%22lastName%22%3A%22Acharya%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Elijah%20A.%22%2C%22lastName%22%3A%22Adefisan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Michael%20L.%22%2C%22lastName%22%3A%22Anderson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Stella%22%2C%22lastName%22%3A%22Aura%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ahmed%20A.%22%2C%22lastName%22%3A%22Balogun%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Douglas%22%2C%22lastName%22%3A%22Bertram%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sonia%22%2C%22lastName%22%3A%22Bluhm%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22David%20J.%22%2C%22lastName%22%3A%22Brayshaw%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jethro%22%2C%22lastName%22%3A%22Browell%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Dominik%22%2C%22lastName%22%3A%22B%5Cu00fceler%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrew%22%2C%22lastName%22%3A%22Charlton-Perez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xandre%22%2C%22lastName%22%3A%22Chourio%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Isadora%22%2C%22lastName%22%3A%22Christel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Caio%20A.%20S.%22%2C%22lastName%22%3A%22Coelho%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Michael%20J.%22%2C%22lastName%22%3A%22DeFlorio%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Luca%22%2C%22lastName%22%3A%22Delle%20Monache%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Francesca%22%2C%22lastName%22%3A%22Di%20Giuseppe%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ana%20Mar%5Cu00eda%22%2C%22lastName%22%3A%22Garc%5Cu00eda-Sol%5Cu00f3rzano%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Peter%20B.%22%2C%22lastName%22%3A%22Gibson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lisa%22%2C%22lastName%22%3A%22Goddard%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Carmen%22%2C%22lastName%22%3A%22Gonz%5Cu00e1lez%20Romero%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Richard%20J.%22%2C%22lastName%22%3A%22Graham%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Robert%20M.%22%2C%22lastName%22%3A%22Graham%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christian%20M.%22%2C%22lastName%22%3A%22Grams%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alan%22%2C%22lastName%22%3A%22Halford%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22W.%20T.%20Katty%22%2C%22lastName%22%3A%22Huang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Kjeld%22%2C%22lastName%22%3A%22Jensen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mary%22%2C%22lastName%22%3A%22Kilavi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Kamoru%20A.%22%2C%22lastName%22%3A%22Lawal%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Robert%20W.%22%2C%22lastName%22%3A%22Lee%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22David%22%2C%22lastName%22%3A%22MacLeod%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrea%22%2C%22lastName%22%3A%22Manrique-Su%5Cu00f1%5Cu00e9n%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Eduardo%20S.%20P.%20R.%22%2C%22lastName%22%3A%22Martins%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Carolyn%20J.%22%2C%22lastName%22%3A%22Maxwell%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22William%20J.%22%2C%22lastName%22%3A%22Merryfield%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22%5Cu00c1ngel%20G.%22%2C%22lastName%22%3A%22Mu%5Cu00f1oz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Eniola%22%2C%22lastName%22%3A%22Olaniyan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22George%22%2C%22lastName%22%3A%22Otieno%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22John%20A.%22%2C%22lastName%22%3A%22Oyedepo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Llu%5Cu00eds%22%2C%22lastName%22%3A%22Palma%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ilias%20G.%22%2C%22lastName%22%3A%22Pechlivanidis%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Diego%22%2C%22lastName%22%3A%22Pons%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%20Martin%22%2C%22lastName%22%3A%22Ralph%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Dirceu%20S.%22%2C%22lastName%22%3A%22Reis%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Tomas%20A.%22%2C%22lastName%22%3A%22Remenyi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22James%20S.%22%2C%22lastName%22%3A%22Risbey%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Donald%20J.%20C.%22%2C%22lastName%22%3A%22Robertson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrew%20W.%22%2C%22lastName%22%3A%22Robertson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Stefan%22%2C%22lastName%22%3A%22Smith%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Albert%22%2C%22lastName%22%3A%22Soret%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ting%22%2C%22lastName%22%3A%22Sun%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Martin%20C.%22%2C%22lastName%22%3A%22Todd%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Carly%20R.%22%2C%22lastName%22%3A%22Tozer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Francisco%20C.%22%2C%22lastName%22%3A%22Vasconcelos%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ilaria%22%2C%22lastName%22%3A%22Vigo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Duane%20E.%22%2C%22lastName%22%3A%22Waliser%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Fredrik%22%2C%22lastName%22%3A%22Wetterhall%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Robert%20G.%22%2C%22lastName%22%3A%22Wilson%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20The%20subseasonal-to-seasonal%20%28S2S%29%20predictive%20time%20scale%2C%20encompassing%20lead%20times%20ranging%20from%202%20weeks%20to%20a%20season%2C%20is%20at%20the%20frontier%20of%20forecasting%20science.%20Forecasts%20on%20this%20time%20scale%20provide%20opportunities%20for%20enhanced%20application-focused%20capabilities%20to%20complement%20existing%20weather%20and%20climate%20services%20and%20products.%20There%20is%2C%20however%2C%20a%20%5Cu201cknowledge%5Cu2013value%5Cu201d%20gap%2C%20where%20a%20lack%20of%20evidence%20and%20awareness%20of%20the%20potential%20socioeconomic%20benefits%20of%20S2S%20forecasts%20limits%20their%20wider%20uptake.%20To%20address%20this%20gap%2C%20here%20we%20present%20the%20first%20global%20community%20effort%20at%20summarizing%20relevant%20applications%20of%20S2S%20forecasts%20to%20guide%20further%20decision-making%20and%20support%20the%20continued%20development%20of%20S2S%20forecasts%20and%20related%20services.%20Focusing%20on%2012%20sectoral%20case%20studies%20spanning%20public%20health%2C%20agriculture%2C%20water%20resource%20management%2C%20renewable%20energy%20and%20utilities%2C%20and%20emergency%20management%20and%20response%2C%20we%20draw%20on%20recent%20advancements%20to%20explore%20their%20application%20and%20utility.%20These%20case%20studies%20mark%20a%20significant%20step%20forward%20in%20moving%20from%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20potential%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20to%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20actual%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20S2S%20forecasting%20applications.%20We%20show%20that%20by%20placing%20user%20needs%20at%20the%20forefront%20of%20S2S%20forecast%20development%5Cu2014demonstrating%20both%20skill%20and%20utility%20across%20sectors%5Cu2014this%20dialogue%20can%20be%20used%20to%20help%20promote%20and%20accelerate%20the%20awareness%2C%20value%2C%20and%20cogeneration%20of%20S2S%20forecasts.%20We%20also%20highlight%20that%20while%20S2S%20forecasts%20are%20increasingly%20gaining%20interest%20among%20users%2C%20incorporating%20probabilistic%20S2S%20forecasts%20into%20existing%20decision-making%20operations%20is%20not%20trivial.%20Nevertheless%2C%20S2S%20forecasting%20represents%20a%20significant%20opportunity%20to%20generate%20useful%2C%20usable%2C%20and%20actionable%20forecast%20applications%20for%20and%20with%20users%20that%20will%20increasingly%20unlock%20the%20potential%20of%20this%20forecasting%20time%20scale.%22%2C%22date%22%3A%2206%5C%2F2022%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1175%5C%2FBAMS-D-20-0224.1%22%2C%22ISSN%22%3A%220003-0007%2C%201520-0477%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fjournals.ametsoc.org%5C%2Fview%5C%2Fjournals%5C%2Fbams%5C%2F103%5C%2F6%5C%2FBAMS-D-20-0224.1.xml%22%2C%22collections%22%3A%5B%223BVIFSK4%22%2C%22GS9TJSRH%22%2C%22FCUZWX58%22%5D%2C%22dateModified%22%3A%222022-08-29T23%3A18%3A12Z%22%7D%7D%2C%7B%22key%22%3A%225JMJYJ3L%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Voss%20et%20al.%22%2C%22parsedDate%22%3A%222021-12%22%2C%22numChildren%22%3A4%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EVoss%2C%20K.%20K.%2C%20Evan%2C%20A.%20T.%2C%20%26amp%3B%20%3Cstrong%3ERalph%3C%5C%2Fstrong%3E%2C%20F.%20M.%20%282021%29.%20Evaluating%20the%20meteorological%20conditions%20associated%20with%20dusty%20atmospheric%20rivers.%20%3Ci%3EJournal%20of%20Geophysical%20Research-Atmospheres%3C%5C%2Fi%3E%2C%20%3Ci%3E126%3C%5C%2Fi%3E%2824%29%2C%2014.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2021jd035403%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2021jd035403%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Evaluating%20the%20meteorological%20conditions%20associated%20with%20dusty%20atmospheric%20rivers%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22K.%20K.%22%2C%22lastName%22%3A%22Voss%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%20T.%22%2C%22lastName%22%3A%22Evan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%20M.%22%2C%22lastName%22%3A%22Ralph%22%7D%5D%2C%22abstractNote%22%3A%22Trans-Pacific%20dust%20has%20been%20shown%20to%20influence%20the%20micro-physical%20characteristics%20of%20atmospheric%20rivers%20that%20make%20landfall%20along%20the%20U.S.%20west%20coast.%20Atmospheric%20Rivers%20%28AR%29%20reaching%20North%20America%20provide%20valuable%20water%20resources%2C%20but%20also%20can%20produce%20damaging%20floods.%20While%20substantial%20research%20has%20been%20devoted%20to%20understanding%20the%20structure%20and%20meteorological%20drivers%20of%20atmospheric%20rivers%2C%20far%20less%20is%20known%20about%20the%20conditions%20that%20lead%20to%20the%20presence%20of%20dust%20within%20and%20around%20these%20storms.%20Here%2C%20we%20utilize%20an%2018-year%20record%20of%20the%20dust%20content%20of%20AR%20surroundings%20combined%20with%20satellite%2C%20reanalysis%2C%20and%20observational%20meteorological%20data%20to%20understand%20the%20drivers%20of%20ARs%20embedded%20within%20dusty%20environments%2C%20or%20%5C%22dusty%20ARs%2C%5C%22%20as%20compared%20to%20ARs%20in%20more%20pristine%20environments.%20We%20find%20that%20dusty%20ARs%20are%20associated%20with%20transport%20of%20dust%20from%20the%20east%20Asian%20coast%20to%20North%20America.%20Dusty%20ARs%20are%20characterized%20by%20conditions%20that%20are%20especially%20conducive%20to%20transport%20of%20dust%20across%20the%20Pacific%3B%20namely%2C%20enhanced%20mid-%20to%20upper-tropospheric%20westerly%20winds%20over%20Asian%20dust%20source%20regions%20and%20over%20the%20Pacific.%20In%20contrast%2C%20ARs%20in%20more%20pristine%20environments%20are%20associated%20with%20a%20persistent%20ridge%20over%20the%20central%20Pacific%2C%20which%20blocks%20zonal%20westerly%20flow%2C%20as%20well%20as%20continental%20dust.%20We%20also%20show%20that%20while%20trans-Pacific%20dust%20is%20largely%20confined%20to%20the%20600-200%20hPa%20levels%2C%20this%20dust%20flows%20downward%20along%20post-cold%20frontal%20isentropic%20surfaces%20into%20the%20AR%20environment%20in%20the%20lower%20troposphere.%22%2C%22date%22%3A%222021%5C%2F12%22%2C%22language%22%3A%22English%22%2C%22DOI%22%3A%2210.1029%5C%2F2021jd035403%22%2C%22ISSN%22%3A%222169-897X%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%22LL8MR93L%22%2C%223BVIFSK4%22%5D%2C%22dateModified%22%3A%222022-07-14T15%3A41%3A27Z%22%7D%7D%2C%7B%22key%22%3A%22LKIT7D89%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Woodside%20et%20al.%22%2C%22parsedDate%22%3A%222021-12%22%2C%22numChildren%22%3A2%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EWoodside%2C%20G.%20D.%2C%20Hutchinson%2C%20A.%20S.%2C%20%3Cstrong%3ERalph%3C%5C%2Fstrong%3E%2C%20F.%20M.%2C%20Talbot%2C%20C.%2C%20Hartman%2C%20R.%2C%20%26amp%3B%20Delaney%2C%20C.%20%282021%29.%20Increasing%20stormwater%20capture%20and%20recharge%20using%20Forecast%20Informed%20Reservoir%20Operations%2C%20Prado%20Dam.%20%3Ci%3EGroundwater%3C%5C%2Fi%3E%2C%207.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1111%5C%2Fgwat.13162%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1111%5C%2Fgwat.13162%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Increasing%20stormwater%20capture%20and%20recharge%20using%20Forecast%20Informed%20Reservoir%20Operations%2C%20Prado%20Dam%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22G.%20D.%22%2C%22lastName%22%3A%22Woodside%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%20S.%22%2C%22lastName%22%3A%22Hutchinson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%20M.%22%2C%22lastName%22%3A%22Ralph%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C.%22%2C%22lastName%22%3A%22Talbot%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R.%22%2C%22lastName%22%3A%22Hartman%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C.%22%2C%22lastName%22%3A%22Delaney%22%7D%5D%2C%22abstractNote%22%3A%22The%20United%20States%20Army%20Corps%20of%20Engineers%20%28USACE%29%20operates%20Prado%20Dam%20in%20southern%20California%20for%20flood%20risk%20management%20and%20to%20capture%20stormwater%20for%20groundwater%20recharge.%20USACE%20and%20the%20Orange%20County%20Water%20District%20%28OCWD%29%20have%20collaborated%20for%20over%2030%20years%20to%20temporarily%20store%20Santa%20Ana%20River%20%28SAR%29%20stormflow%20at%20Prado%20Dam%20for%20groundwater%20recharge%20in%20the%20Orange%20County%20Groundwater%20Basin%20%28Basin%29.%20USACE%2C%20OCWD%2C%20and%20other%20stakeholders%20are%20assessing%20Forecast%20Informed%20Reservoir%20Operations%20%28FIRO%29%20at%20Prado%20Dam%20as%20a%20new%20operational%20approach%20to%20capture%20additional%20supplies%20of%20SAR%20water%20for%20groundwater%20recharge%20without%20affecting%20Prado%20Dam%27s%20primary%20flood%20risk%20management%20purpose.%20Many%20dams%2C%20including%20Prado%20Dam%2C%20do%20not%20directly%20incorporate%20precipitation%20and%20streamflow%20forecasting%20in%20their%20operations.%20FIRO%20is%20an%20innovative%20research%20and%20operations%20partnership%20that%20uses%20weather%20forecasting%2C%20streamflow%20modeling%2C%20and%20watershed%20monitoring%20to%20help%20water%20managers%20selectively%20retain%20or%20release%20water%20from%20reservoirs%20in%20a%20manner%20that%20reflects%20current%20and%20forecasted%20conditions.%20A%20recently%20completed%20study%2C%20called%20a%20Preliminary%20Viability%20Assessment%20of%20FIRO%20at%20Prado%20Dam%2C%20determined%20that%20increased%20stormwater%20capture%2C%20beyond%20the%20current%20program%2C%20is%20viable%20subject%20to%20completion%20of%20additional%20studies.%20The%20ultimate%20increase%20in%20stormwater%20capture%20is%20anticipated%20to%20largely%20be%20a%20function%20of%20community%20and%20environmental%20tolerance%20for%20more%20frequent%20inundation%20rather%20than%20operational%20constraints%20of%20the%20dam.%20FIRO%20is%20a%20promising%20approach%20to%20operating%20Prado%20Dam%20that%20can%20increase%20SAR%20stormwater%20capture%20for%20recharge%20to%20the%20Basin%2C%20reducing%20the%20need%20for%20imported%20water%20and%20contributing%20to%20sustainable%20groundwater%20management.%22%2C%22date%22%3A%222021%5C%2F12%22%2C%22language%22%3A%22English%22%2C%22DOI%22%3A%2210.1111%5C%2Fgwat.13162%22%2C%22ISSN%22%3A%220017-467X%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%223BVIFSK4%22%5D%2C%22dateModified%22%3A%222022-07-13T17%3A23%3A38Z%22%7D%7D%5D%7D
Zou, X., Cordeira, J. M., Bartlett, S. M., & Ralph, F. M. (2025). A Case Study of an Exceptional Atmospheric River and Explosively Deepening Cyclone Over the US Central Plains in March 2019. Journal of Geophysical Research: Atmospheres, 130(1), e2024JD042309. https://doi.org/10.1029/2024JD042309
Rush, W. D., Lora, J. M., Skinner, C. B., Menemenlis, S. A., Shields, C. A., Ullrich, P., O’Brien, T. A., Brands, S., Guan, B., Mattingly, K. S., McClenny, E., Nardi, K., Nellikkattil, A., Ramos, A. M., Reid, K. J., Shearer, E., Tomé, R., Wille, J. D., Leung, L. R., … Quagraine, K. T. (2025). Atmospheric River Detection Under Changing Seasonality and Mean‐State Climate: ARTMIP Tier 2 Paleoclimate Experiments. Journal of Geophysical Research: Atmospheres, 130(1), e2024JD042222. https://doi.org/10.1029/2024JD042222
Luna-Niño, R., Gershunov, A., Ralph, F. M., Weyant, A., Guirguis, K., DeFlorio, M. J., Cayan, D. R., & Williams, A. P. (2025). Heresy in ENSO teleconnections: atmospheric rivers as disruptors of canonical seasonal precipitation anomalies in the Southwestern US. Climate Dynamics, 63(2), 115. https://doi.org/10.1007/s00382-025-07583-1
Yang, Z., DeFlorio, M. J., Sengupta, A., Wang, J., Castellano, C. M., Gershunov, A., Guirguis, K., Slinskey, E., Guan, B., Delle Monache, L., & Ralph, F. M. (2024). Seasonality and climate modes influence the temporal clustering of unique atmospheric rivers in the Western U.S. Communications Earth & Environment, 5(1), 734. https://doi.org/10.1038/s43247-024-01890-x
Zhang, Z., Ralph, F. M., Zou, X., Kawzenuk, B., Zheng, M., Gorodetskaya, I. V., Rowe, P. M., & Bromwich, D. H. (2024). Extending the Center for Western Weather and Water Extremes (CW3E) atmospheric river scale to the polar regions. The Cryosphere, 18(11), 5239–5258. https://doi.org/10.5194/tc-18-5239-2024
Guirguis, K., Hatchett, B., Gershunov, A., DeFlorio, M., Clemesha, R., Brandt, W. T., Haleakala, K., Castellano, C., Luna Niño, R., Tardy, A., Anderson, M., & Ralph, F. M. (2024). Reinterpreting ENSO’s Role in Modulating Impactful Precipitation Events in California. Geophysical Research Letters, 51(14), e2024GL110326. https://doi.org/10.1029/2024GL110326
Martens, H. R., Lau, N., Swarr, M. J., Argus, D. F., Cao, Q., Young, Z. M., Borsa, A. A., Pan, M., Wilson, A. M., Knappe, E., Ralph, F. M., & Gardner, W. P. (2024). GNSS Geodesy Quantifies Water‐Storage Gains and Drought Improvements in California Spurred by Atmospheric Rivers. Geophysical Research Letters, 51(13), e2023GL107721. https://doi.org/10.1029/2023GL107721
Wang, J., DeFlorio, M. J., Gershunov, A., Guirguis, K., Delle Monache, L., & Ralph, F. M. (2024). Association of western US compound hydrometeorological extremes with Madden-Julian oscillation and ENSO interaction. Communications Earth & Environment, 5(1), 314. https://doi.org/10.1038/s43247-024-01449-w
Ghazvinian, M., Delle Monache, L., Afzali Gorooh, V., Steinhoff, D., Sengupta, A., Hu, W., Simpson, M., Weihs, R., Papadopoulos, C., Mulrooney, P., Kawzenuk, B., Mascioli, N., & Ralph, F. M. (2024). Deep Learning of a 200-member Ensemble with a Limited Historical Training to Improve the Prediction of Extreme Precipitation Events. Monthly Weather Review. https://doi.org/10.1175/MWR-D-23-0277.1
Li, L., Cannon, F., Mazloff, M. R., Subramanian, A. C., Wilson, A. M., & Ralph, F. M. (2024). Impact of atmospheric rivers on Arctic sea ice variations. The Cryosphere, 18(1), 121–137. https://doi.org/10.5194/tc-18-121-2024
Ralph, F. M., Simpson, M., Iacobellis, S., Cordeira, J. M., Cannon, F., Cobb, A., Michaelis, A. C., & Delle Monache, L. (2024). Dropsonde Observations of the Stable Marine Boundary Layer beneath Atmospheric Rivers. Monthly Weather Review, 152(12), 2735–2751. https://doi.org/10.1175/MWR-D-23-0207.1
Bromwich, D. H., Gorodetskaya, I. V., Carpentier, S., Alexander, S., Bazile, E., Heinrich, V. J., Massonnet, F., Powers, J. G., Carrasco, J. F., Cayette, A., Choi, T., Chyhareva, A., Colwell, S. R., Cordeira, J. M., Cordero, R. R., Doerenbecher, A., Durán-Alarcón, C., French, W. J. R., Gonzalez-Herrero, S., … Zou, X. (2024). Winter Targeted Observing Periods during the Year of Polar Prediction in the Southern Hemisphere (YOPP-SH). Bulletin of the American Meteorological Society, 105(9), E1662–E1684. https://doi.org/10.1175/BAMS-D-22-0249.1
Zheng, M., Delle Monache, L., Wu, X., Kawzenuk, B., Ralph, F. M., Zhu, Y., Torn, R., Tallapragada, V. S., Zhang, Z., Wu, K., & Wang, J. (2024). Impact of Atmospheric River Reconnaissance Dropsonde Data on the Assimilation of Satellite Radiance Data in GFS. Journal of Atmospheric and Oceanic Technology, 41(9), 819–832. https://doi.org/10.1175/JTECH-D-23-0167.1
Lin, W.-S., Norris, J. R., DeFlorio, M. J., & Ralph, F. M. (2024). Local and Object-Based Perspectives on Atmospheric Rivers Making Landfall on the Western North American Coastline. Journal of Hydrometeorology, 25(5), 673–688. https://doi.org/10.1175/JHM-D-22-0155.1
Zheng, M., Torn, R., Delle Monache, L., Doyle, J., Ralph, F. M., Tallapragada, V., Davis, C., Steinhoff, D., Wu, X., Wilson, A., Papadopoulos, C., & Mulrooney, P. (2024). An Assessment of Dropsonde Sampling Strategies for Atmospheric River Reconnaissance. Monthly Weather Review, 152(3), 811–835. https://doi.org/10.1175/MWR-D-23-0111.1
Wille, J. D., Alexander, S. P., Amory, C., Baiman, R., Barthélemy, L., Bergstrom, D. M., Berne, A., Binder, H., Blanchet, J., Bozkurt, D., Bracegirdle, T. J., Casado, M., Choi, T., Clem, K. R., Codron, F., Datta, R., Di Battista, S., Favier, V., Francis, D., … Zou, X. (2024). The Extraordinary March 2022 East Antarctica “Heat” Wave. Part I: Observations and Meteorological Drivers. Journal of Climate, 37(3), 757–778. https://doi.org/10.1175/JCLI-D-23-0175.1
Wille, J. D., Alexander, S. P., Amory, C., Baiman, R., Barthélemy, L., Bergstrom, D. M., Berne, A., Binder, H., Blanchet, J., Bozkurt, D., Bracegirdle, T. J., Casado, M., Choi, T., Clem, K. R., Codron, F., Datta, R., Battista, S. D., Favier, V., Francis, D., … Zou, X. (2024). The Extraordinary March 2022 East Antarctica “Heat” Wave. Part II: Impacts on the Antarctic Ice Sheet. Journal of Climate, 37(3), 779–799. https://doi.org/10.1175/JCLI-D-23-0176.1
DeFlorio, M. J., Sengupta, A., Castellano, C. M., Wang, J., Zhang, Z., Gershunov, A., Guirguis, K., Luna Niño, R., Clemesha, R. E. S., Pan, M., Xiao, M., Kawzenuk, B., Gibson, P. B., Scheftic, W., Broxton, P. D., Switanek, M. B., Yuan, J., Dettinger, M. D., Hecht, C. W., … Anderson, M. L. (2024). From California’s Extreme Drought to Major Flooding: Evaluating and Synthesizing Experimental Seasonal and Subseasonal Forecasts of Landfalling Atmospheric Rivers and Extreme Precipitation during Winter 2022/23. Bulletin of the American Meteorological Society, 105(1), E84–E104. https://doi.org/10.1175/BAMS-D-22-0208.1
Guirguis, K., Gershunov, A., Hatchett, B. J., DeFlorio, M. J., Subramanian, A. C., Clemesha, R., Delle Monache, L., & Ralph, F. M. (2023). Subseasonal Prediction of Impactful California Winter Weather in a Hybrid Dynamical‐Statistical Framework. Geophysical Research Letters, 50(23), e2023GL105360. https://doi.org/10.1029/2023GL105360
Gorodetskaya, I. V., Durán-Alarcón, C., González-Herrero, S., Clem, K. R., Zou, X., Rowe, P., Rodriguez Imazio, P., Campos, D., Leroy-Dos Santos, C., Dutrievoz, N., Wille, J. D., Chyhareva, A., Favier, V., Blanchet, J., Pohl, B., Cordero, R. R., Park, S.-J., Colwell, S., Lazzara, M. A., … Picard, G. (2023). Record-high Antarctic Peninsula temperatures and surface melt in February 2022: a compound event with an intense atmospheric river. Npj Climate and Atmospheric Science, 6(1), 202. https://doi.org/10.1038/s41612-023-00529-6
Zou, X., Cordeira, J. M., Bartlett, S. M., Kawzenuk, B., Roj, S., Castellano, C., Hecht, C., & Ralph, F. M. (2023). Mesoscale and Synoptic Scale Analysis of Narrow Cold Frontal Rainband During a Landfalling Atmospheric River in California During January 2021. Journal of Geophysical Research: Atmospheres, 128(20), e2023JD039426. https://doi.org/10.1029/2023JD039426
Zou, X., Rowe, P. M., Gorodetskaya, I., Bromwich, D. H., Lazzara, M. A., Cordero, R. R., Zhang, Z., Kawzenuk, B., Cordeira, J. M., Wille, J. D., Ralph, F. M., & Bai, L. (2023). Strong Warming Over the Antarctic Peninsula During Combined Atmospheric River and Foehn Events: Contribution of Shortwave Radiation and Turbulence. Journal of Geophysical Research: Atmospheres, 128(16), e2022JD038138. https://doi.org/10.1029/2022JD038138
Lavers, D. A., Torn, R. D., Davis, C., Richardson, D. S., Ralph, F. M., & Pappenberger, F. (2023). Forecast evaluation of the North Pacific jet stream using AR Recon dropwindsondes. Quarterly Journal of the Royal Meteorological Society, qj.4545. https://doi.org/10.1002/qj.4545
Shulgina, T., Gershunov, A., Hatchett, B. J., Guirguis, K., Subramanian, A. C., Margulis, S. A., Fang, Y., Cayan, D. R., Pierce, D. W., Dettinger, M., Anderson, M. L., & Ralph, F. M. (2023). Observed and projected changes in snow accumulation and snowline in California’s snowy mountains. Climate Dynamics. https://doi.org/10.1007/s00382-023-06776-w
Zhang, Z., DeFlorio, M. J., Delle Monache, L., Subramanian, A. C., Ralph, F. M., Waliser, D. E., Zheng, M., Guan, B., Goodman, A., Molod, A. M., Vitart, F., Kumar, A., & Lin, H. (2023). Multi‐Model Subseasonal Prediction Skill Assessment of Water Vapor Transport Associated With Atmospheric Rivers Over the Western U.S. Journal of Geophysical Research: Atmospheres, 128(7), e2022JD037608. https://doi.org/10.1029/2022JD037608
Shields, C. A., Payne, A. E., Shearer, E. J., Wehner, M. F., O’Brien, T. A., Rutz, J. J., Leung, L. R., Ralph, F. M., Marquardt Collow, A. B., Ullrich, P. A., Dong, Q., Gershunov, A., Griffith, H., Guan, B., Lora, J. M., Lu, M., McClenny, E., Nardi, K. M., Pan, M., … Zarzycki, C. (2023). Future Atmospheric Rivers and Impacts on Precipitation: Overview of the ARTMIP Tier 2 High‐Resolution Global Warming Experiment. Geophysical Research Letters, 50(6), e2022GL102091. https://doi.org/10.1029/2022GL102091
Castellano, C. M., DeFlorio, M. J., Gibson, P. B., Delle Monache, L., Kalansky, J. F., Wang, J., Guirguis, K., Gershunov, A., Ralph, F. M., Subramanian, A. C., & Anderson, M. L. (2023). Development of a Statistical Subseasonal Forecast Tool to Predict California Atmospheric Rivers and Precipitation Based on MJO and QBO Activity. Journal of Geophysical Research: Atmospheres, 128(6), e2022JD037360. https://doi.org/10.1029/2022JD037360
Hu, W., Ghazvinian, M., Chapman, W. E., Sengupta, A., Ralph, F. M., & Delle Monache, L. (2023). Deep Learning Forecast Uncertainty for Precipitation over Western US. Monthly Weather Review. https://doi.org/10.1175/MWR-D-22-0268.1
Guan, B., Waliser, D. E., & Ralph, F. M. (2023). Global Application of the Atmospheric River Scale. Journal of Geophysical Research: Atmospheres, 128(3), e2022JD037180. https://doi.org/10.1029/2022JD037180
Badrinath, A., Delle Monache, L., Hayatbini, N., Chapman, W., Cannon, F., & Ralph, M. (2023). Improving Precipitation Forecasts with Convolutional Neural Networks. Weather and Forecasting. https://doi.org/10.1175/WAF-D-22-0002.1
DeHaan, L. L., Wilson, A. M., Kawzenuk, B., Zheng, M., Monache, L. D., Wu, X., Lavers, D. A., Ingleby, B., Tallapragada, V., Pappenberger, F., & Ralph, F. M. (2023). Impacts of Dropsonde Observations on Forecasts of Atmospheric Rivers and Associated Precipitation in the NCEP GFS and ECMWF IFS Models. Weather and Forecasting, 38(12), 2397–2413. https://doi.org/10.1175/WAF-D-23-0025.1
Cobb, A., Steinhoff, D., Weihs, R., Delle Monache, L., DeHaan, L., Reynolds, D., Cannon, F., Kawzenuk, B., Papadopolous, C., & Ralph, F. M. (2023). West-WRF 34-Year Reforecast: Description and Validation. Journal of Hydrometeorology, 24(11), 2125–2140. https://doi.org/10.1175/JHM-D-22-0235.1
Lord, S. J., Wu, X., Tallapragada, V., & Ralph, F. M. (2023). The Impact of Dropsonde Data on the Performance of the NCEP Global Forecast System during the 2020 Atmospheric Rivers Observing Campaign. Part II: Dynamic Variables and Humidity. Weather and Forecasting, 38(5), 721–752. https://doi.org/10.1175/WAF-D-22-0072.1
Howard, I. M., Stahle, D. W., Dettinger, M. D., Poulsen, C., Ralph, F. M., Torbenson, M. C. A., & Gershunov, A. (2023). A 440-Year Reconstruction of Heavy Precipitation in California from Blue Oak Tree Rings. Journal of Hydrometeorology, 24(3), 463–477. https://doi.org/10.1175/JHM-D-22-0062.1
Lord, S. J., Wu, X., Tallapragada, V., & Ralph, F. M. (2023). The Impact of Dropsonde Data on the Performance of the NCEP Global Forecast System during the 2020 Atmospheric Rivers Observing Campaign. Part I: Precipitation. Weather and Forecasting, 38(1), 17–45. https://doi.org/10.1175/WAF-D-22-0036.1
Reynolds, C. A., Stone, R. E., Doyle, J. D., Baker, N. L., Wilson, A. M., Ralph, F. M., Lavers, D. A., Subramanian, A. C., & Centurioni, L. (2023). Impacts of Northeastern Pacific Buoy Surface Pressure Observations. Monthly Weather Review, 151(1), 211–226. https://doi.org/10.1175/MWR-D-22-0124.1
Corringham, T. W., McCarthy, J., Shulgina, T., Gershunov, A., Cayan, D. R., & Ralph, F. M. (2022). Climate change contributions to future atmospheric river flood damages in the western United States. Scientific Reports, 12(1), 13747. https://doi.org/10.1038/s41598-022-15474-2
Guirguis, K., Gershunov, A., Hatchett, B., Shulgina, T., DeFlorio, M. J., Subramanian, A. C., Guzman-Morales, J., Aguilera, R., Clemesha, R., Corringham, T. W., Delle Monache, L., Reynolds, D., Tardy, A., Small, I., & Ralph, F. M. (2022). Winter wet-dry weather patterns driving atmospheric rivers and Santa Ana winds provide evidence for increasing wildfire hazard in California. Climate Dynamics, 21. https://doi.org/10.1007/s00382-022-06361-7
Collow, A. B. M., Shields, C. A., Guan, B., Kim, S., Lora, J. M., McClenny, E. E., Nardi, K., Payne, A., Reid, K., Shearer, E. J., Tome, R., Wille, J. D., Ramos, A. M., Gorodetskaya, I. V., Leung, L. R., O’Brien, T. A., Ralph, F. M., Rutz, J., Ullrich, P. A., & Wehner, M. (2022). An overview of ARTMIP’s Tier 2 Reanalysis Intercomparison: Uncertainty in the detection of atmospheric rivers and their associated precipitation. Journal of Geophysical Research-Atmospheres, 127(8), 20. https://doi.org/10.1029/2021jd036155
Michaelis, A. C., Gershunov, A., Weyant, A., Fish, M. A., Shulgina, T., & Ralph, F. M. (2022). Atmospheric river precipitation enhanced by climate change: A case study of the storm that contributed to California’s Oroville Dam crisis. Earths Future, 10(3), 12. https://doi.org/10.1029/2021ef002537
Fish, M. A., Done, J. M., Swain, D. L., Wilson, A. M., Michaelis, A. C., Gibson, P. B., & Ralph, F. M. (2022). Large-Scale Environments of Successive Atmospheric River Events Leading to Compound Precipitation Extremes in California. Journal of Climate, 35(5), 1515–1536. https://doi.org/10.1175/jcli-d-21-0168.1
O’Brien, T. A., Wehner, M. F., Payne, A. E., Shields, C. A., Rutz, J. J., Leung, L. R., Ralph, F. M., Collow, A., Gorodetskaya, I., Guan, B., Lora, J. M., McClenny, E., Nardi, K. M., Ramos, A. M., Tome, R., Sarangi, C., Shearer, E. J., Ullrich, P. A., Zarzycki, C., … Zhou, Y. (2022). Increases in future AR count and size: Overview of the ARTMIP Tier 2 CMIP5/6 experiment. Journal of Geophysical Research-Atmospheres, 127(6), 15. https://doi.org/10.1029/2021jd036013
de Orla-Barile, M., Cannon, F., Oakley, N. S., & Ralph, F. M. (2022). A climatology of narrow cold-frontal rainbands in Southern California. Geophysical Research Letters, 49(2), 10. https://doi.org/10.1029/2021gl095362
Chapman, W. E., Delle Monache, L., Alessandrini, S., Subramanian, A. C., Ralph, F. M., Xie, S. P., Lerch, S., & Hayatbini, N. (2022). Probabilistic Predictions from Deterministic Atmospheric River Forecasts with Deep Learning. Monthly Weather Review, 150(1), 215–234. https://doi.org/10.1175/mwr-d-21-0106.1
Afzali Gorooh, V., Shearer, E. J., Nguyen, P., Hsu, K., Sorooshian, S., Cannon, F., & Ralph, M. (2022). Performance of New Near-Real-Time PERSIANN Product (PDIR-Now) for Atmospheric River Events over the Russian River Basin, California. Journal of Hydrometeorology, 23(12), 1899–1911. https://doi.org/10.1175/JHM-D-22-0066.1
Stewart, B. E., Cordeira, J. M., & Ralph, F. M. (2022). Evaluating GFS and ECMWF Ensemble Forecasts of Integrated Water Vapor Transport along the U.S. West Coast. Weather and Forecasting, 37(11), 1985–2004. https://doi.org/10.1175/WAF-D-21-0114.1
Sun, W., Liu, Z., Davis, C. A., Ralph, F. M., Monache, L. D., & Zheng, M. (2022). Impacts of dropsonde and satellite observations on the forecasts of two atmospheric-river-related heavy rainfall events. Atmospheric Research, 278, 106327. https://doi.org/10.1016/j.atmosres.2022.106327
White, C. J., Domeisen, D. I. V., Acharya, N., Adefisan, E. A., Anderson, M. L., Aura, S., Balogun, A. A., Bertram, D., Bluhm, S., Brayshaw, D. J., Browell, J., Büeler, D., Charlton-Perez, A., Chourio, X., Christel, I., Coelho, C. A. S., DeFlorio, M. J., Delle Monache, L., Di Giuseppe, F., … Wilson, R. G. (2022). Advances in the Application and Utility of Subseasonal-to-Seasonal Predictions. Bulletin of the American Meteorological Society, 103(6), E1448–E1472. https://doi.org/10.1175/BAMS-D-20-0224.1
Voss, K. K., Evan, A. T., & Ralph, F. M. (2021). Evaluating the meteorological conditions associated with dusty atmospheric rivers. Journal of Geophysical Research-Atmospheres, 126(24), 14. https://doi.org/10.1029/2021jd035403
Woodside, G. D., Hutchinson, A. S., Ralph, F. M., Talbot, C., Hartman, R., & Delaney, C. (2021). Increasing stormwater capture and recharge using Forecast Informed Reservoir Operations, Prado Dam. Groundwater, 7. https://doi.org/10.1111/gwat.13162